Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Based System Representation and Synchronization for Multiagent Systems (2404.13937v2)

Published 22 Apr 2024 in eess.SY and cs.SY

Abstract: This paper presents novel solutions of the data-based synchronization problem for continuous-time multiagent systems. We consider the cases of homogeneous and heterogeneous systems. First, we obtain a data-based representation of the synchronization error dynamics for homogeneous systems and show how to extend existing data-based stabilization results to stabilize such error dynamics. The proposed method relies on the solution of a set of linear matrix inequalities that are shown to be feasible. Then, we solve the synchronization problem for heterogeneous systems by means of dynamic controllers. Different from existing results, we do not require model knowledge for the followers and the leader. The theoretical results are finally validated using a numerical simulation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.
  2. H. Zhang, F. L. Lewis, and A. Das, “Optimal design for synchronization of cooperative systems: State feedback, observer and output feedback,” IEEE Transactions on Automatic Control, vol. 56, no. 8, pp. 1948–1952, 2011.
  3. P. Wieland, R. Sepulchre, and F. Allgöwer, “An internal model principle is necessary and sufficient for linear output synchronization,” Automatica, vol. 47, no. 5, pp. 1068–1074, 2011.
  4. D. Chowdhury and H. K. Khalil, “Practical synchronization in networks of nonlinear heterogeneous agents with application to power systems,” IEEE Transactions on Automatic Control, vol. 66, no. 1, pp. 184–198, 2021.
  5. J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor, “A note on persistency of excitation,” Systems & Control Letters, vol. 54, no. 4, pp. 325–329, 2005.
  6. V. G. Lopez and M. A. Müller, “On a continuous-time version of Willems’ lemma,” in 2022 IEEE 61st Conference on Decision and Control (CDC), 2022, pp. 2759–2764.
  7. P. Rapisarda, M. K. Çamlibel, and H. J. van Waarde, “A “fundamental lemma” for continuous-time systems, with applications to data-driven simulation,” Systems & Control Letters, vol. 179, pp. 1–9, 2023.
  8. I. Markovsky and F. Dörfler, “Behavioral systems theory in data-driven analysis, signal processing, and control,” Annual Reviews in Control, vol. 52, pp. 42–64, 2021.
  9. P. Rapisarda, H. van Waarde, and M. Camlibel, “Orthogonal polynomial bases for data-driven analysis and control of continuous-time systems,” IEEE Transactions on Automatic Control, pp. 1–12, 2023.
  10. V. G. Lopez and M. A. Müller, “Data-based control of continuous-time linear systems with performance specifications,” arXiv:2403.00424, 2024.
  11. J. Eising and J. Cortes, “When sampling works in data-driven control: Informativity for stabilization in continuous time,” arXiv:2301.10873, 2023.
  12. J. Jiao, H. J. van Waarde, H. L. Trentelman, M. K. Camlibel, and S. Hirche, “Data-driven output synchronization of heterogeneous leader-follower multi-agent systems,” in 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 466–471.
  13. Z. Chang, J. Jiao, and Z. Li, “Localized data-driven consensus control,” arXiv:2401.12707, 2024.
  14. H. Modares, S. P. Nageshrao, G. A. D. Lopes, R. Babuška, and F. L. Lewis, “Optimal model-free output synchronization of heterogeneous systems using off-policy reinforcement learning,” Automatica, vol. 71, pp. 334–341, 2016.
  15. Y. Zhou, D. Li, and F. Gao, “Data-driven optimal synchronization control for leader-follower multiagent systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 1, pp. 495–503, 2023.
  16. A. Allibhoy and J. Cortés, “Data-based receding horizon control of linear network systems,” IEEE Control Systems Letters, vol. 5, no. 4, pp. 1207–1212, 2021.
  17. J. Berberich, S. Wildhagen, M. Hertneck, and F. Allgöwer, “Data-driven analysis and control of continuous-time systems under aperiodic sampling,” IFAC-PapersOnLine, vol. 54, no. 7, pp. 210–215, 2021.
  18. A. Bisoffi, C. De Persis, and P. Tesi, “Data-driven control via Petersen’s lemma,” Automatica, vol. 145, p. 110537, 2022.
  19. C. D. Persis, R. Postoyan, and P. Tesi, “Event-triggered control from data,” IEEE Transactions on Automatic Control, pp. 1–16, 2023.
  20. V. G. Lopez and M. A. Müller, “An efficient off-policy reinforcement learning algorithm for the continuous-time LQR problem,” in 2023 62nd IEEE Conference on Decision and Control (CDC), 2023, pp. 13–19.
  21. C. De Persis and P. Tesi, “Formulas for data-driven control: Stabilization, optimality, and robustness,” IEEE Transactions on Automatic Control, vol. 65, no. 3, pp. 909–924, 2020.
  22. H. Zhang, Z. Li, Z. Qu, and F. L. Lewis, “On constructing Lyapunov functions for multi-agent systems,” Automatica, vol. 58, pp. 39–42, 2015.
  23. Y. Tian, “Some rank equalities and inequalities for kronecker products of matrices,” Linear and Multilinear Algebra, vol. 53, no. 6, pp. 445–454, 2005.
  24. I. Markovsky and F. Dörfler, “Identifiability in the behavioral setting,” IEEE Transactions on Automatic Control, vol. 68, no. 3, pp. 1667–1677, 2023.

Summary

We haven't generated a summary for this paper yet.