Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Dissipation Nanomechanical Devices from Monocrystalline Silicon Carbide (2404.13893v3)

Published 22 Apr 2024 in cond-mat.mes-hall and physics.app-ph

Abstract: The applications of nanomechanical resonators range from biomolecule mass sensing to hybrid quantum interfaces. Their performance is often limited by internal material damping, which can be greatly reduced by using crystalline materials. Crystalline silicon carbide is appealing due to its exquisite mechanical, electrical and optical properties, but has suffered from high internal damping due to material defects. Here we resolve this by developing nanomechanical resonators fabricated from bulk monocrystalline 4H-silicon carbide. This allows us to achieve damping as low as 2.7 mHz, more than an order-of-magnitude lower than any previous crystalline silicon carbide resonator and corresponding to a quality factor as high as 20 million at room temperature. The volumetric dissipation of our devices reaches the material limit for silicon carbide for the first time. This provides a path to greatly increase the performance of silicon carbide nanomechanical resonators.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. K. E. Petersen, Proceedings of the IEEE 70, 420 (1982).
  2. A. L. Ruoff, Journal of Applied Physics 50, 3354 (1979).
  3. S. Castelletto and A. Boretti, Journal of Physics: Photonics 2, 022001 (2020), publisher: IOP Publishing.
  4. R. Perret, Power Electronics Semiconductor Devices, 1st ed. (John Wiley & Sons, Ltd, 2009).
  5. Y. Klas, Thesis, High Q nanomechanical resonators fabricated from crystalline silicon carbide  (2022).
  6. M. F. Ashby, Acta Metallurgica 37, 1273 (1989).
  7. E. Romero, N. P. Mauranyapin, T. M. F. Hirsch, R. Kalra, C. G. Baker, G. I. Harris,  and W. P. Bowen, “Scalable nanomechanical logic gate,”  (2022), arXiv:2206.11661 [cond-mat, physics:physics].
  8. J. Yang, K. Van Gasse, D. M. Lukin, M. A. Guidry, G. H. Ahn, A. D. White,  and J. Vučković, “Titanium:Sapphire-on-insulator for broadband tunable lasers and high-power amplifiers on chip,”  (2023), arXiv:2312.00256 [physics, physics:quant-ph].
  9. L. Villanueva and S. Schmid, Physical Review Letters 113, 227201 (2014).
  10. M. Bückle, Nanomechanical Systems Based on Tensile-Stressed Crystalline Indium Gallium Phosphide, Ph.D. thesis (2020).
Citations (3)

Summary

We haven't generated a summary for this paper yet.