Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Digital Twin Data Processing for Low-Latency Multicast Short Video Streaming (2404.13749v1)

Published 21 Apr 2024 in cs.NI

Abstract: In this paper, we propose a novel efficient digital twin (DT) data processing scheme to reduce service latency for multicast short video streaming. Particularly, DT is constructed to emulate and analyze user status for multicast group update and swipe feature abstraction. Then, a precise measurement model of DT data processing is developed to characterize the relationship among DT model size, user dynamics, and user clustering accuracy. A service latency model, consisting of DT data processing delay, video transcoding delay, and multicast transmission delay, is constructed by incorporating the impact of user clustering accuracy. Finally, a joint optimization problem of DT model size selection and bandwidth allocation is formulated to minimize the service latency. To efficiently solve this problem, a diffusion-based resource management algorithm is proposed, which utilizes the denoising technique to improve the action-generation process in the deep reinforcement learning algorithm. Simulation results based on the real-world dataset demonstrate that the proposed DT data processing scheme outperforms benchmark schemes in terms of service latency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. Z. Li, Y. Xie, R. Netravali, and K. Jamieson, “Dashlet: Taming swipe uncertainty for robust short video streaming,” in Proc. USENIX Symp. Netw. Syst. Design Implement. (NSDI), Boston, MA, USA, Apr. 2023, pp. 1583–1599.
  2. X. Jiang, F. R. Yu, T. Song, and V. C. M. Leung, “A survey on multi-access edge computing applied to video streaming: Some research issues and challenges,” IEEE Commun. Surv. Tutor., vol. 23, no. 2, pp. 871–903, Mar. 2021.
  3. 3GPP TS 26.346, “Multimedia broadcast/multicast service (MBMS); protocols and codecs,” 2023. [Online]. Available: https://www.3gpp.org/ftp/Specs/archive/26_series/26.346/
  4. X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic network virtualization and pervasive network intelligence for 6G,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 1–30, Jan. 2022.
  5. X. Huang, H. Yang, S. Hu, and X. Shen, “Digital twin-driven network architecture for video streaming,” IEEE Netw., pp. 1–8, Apr. 2024, Early Access.
  6. F. Granelli, R. Capraro, M. Lorandi, and P. Casari, “Evaluating a digital twin of an IoT resource slice: An emulation study using the ELIoT platform,” IEEE Netw. Lett., vol. 3, no. 3, pp. 147–151, Jul. 2021.
  7. X. Huang, W. Wu, S. Hu, M. Li, C. Zhou, and X. Shen, “Digital twin based user-centric resource management for multicast short video streaming,” IEEE J. Sel. Topics Signal Process., pp. 1–16, Early Access, Dec. 2023.
  8. H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” in Proc. AAAI Conf. Artif. Intell., vol. 30, no. 1, Phoenix, Arizona, USA, Feb., 2016.
  9. M. Rahmati, Z. Qi, and D. Pompili, “Underwater adaptive video transmissions using MIMO-based software-defined acoustic modems,” IEEE Trans. Multimedia, vol. 25, pp. 473–485, Nov. 2021.
  10. X. Huang, M. Li, W. Wu, C. Zhou, and X. Shen, “Digital twin-assisted collaborative transcoding for better user satisfaction in live streaming,” in Proc. IEEE Int. Con. Commun. (ICC), Rome, Italy, May, 2023, pp. 4051–4056.
  11. S. Chen, B. Yang, J. Yang, and L. Hanzo, “Dynamic resource allocation for scalable video multirate multicast over wireless networks,” IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 10 227–10 241, Jun. 2020.
  12. S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actor-critic methods,” in Proc. Int. Conf. Mach. Learn. (ICML), Stockholmsmässan, Stockholm, Sweden, Jul. 2018, pp. 1587–1596.
  13. A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal, “Is conditional generative modeling all you need for decision-making?” in Proc. Int. Conf. Learn. Represent. (ICLR), Kigali Rwanda, May, 2023, pp. 1–24.
  14. J. Liu, P. Hang, X. Zhao, J. Wang, and J. Sun, “DDM-lag: A diffusion-based decision-making model for autonomous vehicles with lagrangian safety enhancement,” arXiv preprint arXiv:2401.03629, Jan. 2024.
  15. X. Huang, C. Zhou, W. Wu, M. Li, H. Wu, and X. Shen, “Personalized QoE enhancement for adaptive video streaming: A digital twin-assisted scheme,” in in Proc. IEEE Global Commun. Conf. (GLOBECOM), Rio de Janeiro, Brazil, Dec. 2022, pp. 4001–4006.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com