Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Multi-round Submodular Optimization with Budget (2404.13737v4)

Published 21 Apr 2024 in cs.DS and cs.AI

Abstract: In this work, we study the Stochastic Budgeted Multi-round Submodular Maximization (SBMSm) problem, where we aim to adaptively maximize the sum, over multiple rounds, of a monotone and submodular objective function defined on subsets of items. The objective function also depends on the realization of stochastic events, and the total number of items we can select over all rounds is bounded by a limited budget. This problem extends, and generalizes to multiple round settings, well-studied problems such as (adaptive) influence maximization and stochastic probing. We show that, if the number of items and stochastic events is somehow bounded, there is a polynomial time dynamic programming algorithm for SBMSm. Then, we provide a simple greedy $1/2(1-1/e-\epsilon)\approx 0.316$-approximation algorithm for SBMSm, that first non-adaptively allocates the budget to be spent at each round, and then greedily and adaptively maximizes the objective function by using the budget assigned at each round. Finally, we introduce the {\em budget-adaptivity gap}, by which we measure how much an adaptive policy for SBMSm is better than an optimal partially adaptive one that, as in our greedy algorithm, determines the budget allocation in advance. We show that the budget-adaptivity gap lies between $e/(e-1)\approx 1.582$ and $2$.

Summary

We haven't generated a summary for this paper yet.