Cluster sizes in subcritical soft Boolean models (2404.13730v1)
Abstract: We consider the soft Boolean model, a model that interpolates between the Boolean model and long-range percolation, where vertices are given via a stationary Poisson point process. Each vertex carries an independent Pareto-distributed radius and each pair of vertices is assigned another independent Pareto weight with a potentially different tail exponent. Two vertices are now connected if they are within distance of the larger radius multiplied by the edge weight. We determine the tail behaviour of the Euclidean diameter and the number of points of a typical maximally connected component in a subcritical percolation phase. For this, we present a sharp criterion in terms of the tail exponents of the edge-weight and radius distributions that distinguish a regime where the tail behaviour is controlled only by the edge exponent from a regime in which both exponents are relevant. Our proofs rely on fine path-counting arguments identifying the precise order of decay of the probability that far-away vertices are connected.
- Daniel Ahlberg, Vincent Tassion and Augusto Teixeira “Sharpness of the phase transition for continuum percolation in ℝ2superscriptℝ2\mathbb{R}^{2}blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT” In Probab. Theory Related Fields 172.1-2, 2018, pp. 525–581 DOI: 10.1007/s00440-017-0815-8
- “Discontinuity of the percolation density in one-dimensional 1/|x−y|21superscript𝑥𝑦21/|x-y|^{2}1 / | italic_x - italic_y | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT percolation models” In Comm. Math. Phys. 107.4, 1986, pp. 611–647 URL: http://projecteuclid.org/euclid.cmp/1104116233
- “Inequalities with applications to percolation and reliability” In J. Appl. Probab. 22.3, 1985, pp. 556–569 DOI: 10.1017/s0021900200029326
- Karl Bringmann, Ralph Keusch and Johannes Lengler “Sampling geometric inhomogeneous random graphs in linear time” In 25th European Symposium on Algorithms 87, LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, pp. Art. No. 20\bibrangessep15
- Karl Bringmann, Ralph Keusch and Johannes Lengler “Geometric inhomogeneous random graphs” In Theoret. Comput. Sci. 760, 2019, pp. 35–54 DOI: 10.1016/j.tcs.2018.08.014
- “Density and uniqueness in percolation” In Comm. Math. Phys. 121.3, 1989, pp. 501–505 URL: http://projecteuclid.org/euclid.cmp/1104178143
- Maria Deijfen, Remco Hofstad and Gerard Hooghiemstra “Scale-free percolation” In Ann. Inst. Henri Poincaré Probab. Stat. 49.3, 2013, pp. 817–838 DOI: 10.1214/12-AIHP480
- “Almost sharp sharpness for Poisson Boolean percolation”, 2022 arXiv:2209.00999 [math.PR]
- D. Denisov, A.B. Dieker and V. Shneer “Large deviations for random walks under subexponentiality: the big-jump domain” In Ann. Probab. 36.5 Institute of Mathematical Statistics, 2008, pp. 1946–1991 URL: http://www.jstor.org/stable/25450633
- Philippe Deprez and Mario V. Wüthrich “Scale-free percolation in continuum space” In Commun. Math. Stat. 7.3, 2019, pp. 269–308 DOI: 10.1007/s40304-018-0142-0
- Hugo Duminil-Copin, Christophe Garban and Vincent Tassion “Long-range models in 1D revisited” In Ann. Inst. Henri Poincaré Probab. Stat. 60.1, 2024, pp. 232–241 DOI: 10.1214/22-AIHP1355
- Hugo Duminil-Copin, Aran Raoufi and Vincent Tassion “Subcritical phase of d𝑑ditalic_d-dimensional Poisson-Boolean percolation and its vacant set” In Ann. H. Lebesgue 3, 2020, pp. 677–700 DOI: 10.5802/ahl.43
- Meyer Dwass “The total progeny in a branching process and a related random walk” In J. Appl. Probab. 6.3, 1969, pp. 682–686 DOI: 10.2307/3212112
- E.N. Gilbert “Random plane networks” In J. Soc. Indust. Appl. Math. 9, 1961, pp. 533–543
- Jean-Baptiste Gouéré “Subcritical regimes in the Poisson Boolean model of continuum percolation” In Ann. Probab. 36.4, 2008, pp. 1209–1220 DOI: 10.1214/07-AOP352
- “The age-dependent random connection model” In Queueing Syst. 93.3-4, 2019, pp. 309–331 DOI: 10.1007/s11134-019-09625-y
- Peter Gracar, Arne Grauer and Peter Mörters “Chemical distance in geometric random graphs with long edges and scale-free degree distribution” In Comm. Math. Phys. 395.2, 2022, pp. 859–906 DOI: 10.1007/s00220-022-04445-3
- “Recurrence versus transience for weight-dependent random connection models” In Electron. J. Probab. 27 Institute of Mathematical StatisticsBernoulli Society, 2022, pp. 1–31 DOI: 10.1214/22-EJP748
- Peter Gracar, Lukas Lüchtrath and Christian Mönch “Finiteness of the percolation threshold for inhomogeneous long-range models in one dimension” arXiv, 2022 DOI: 10.48550/ARXIV.2203.11966
- Peter Gracar, Lukas Lüchtrath and Peter Mörters “Percolation phase transition in weight-dependent random connection models” In Adv. in Appl. Probab. 53.4, 2021, pp. 1090–1114 DOI: 10.1017/apr.2021.13
- “Van den Berg-Kesten inequality for the Poisson Boolean model for continuum percolation” In Sankhyā: Indian Journ. Stat., Series A (1961-2002) 61.3 Springer, 1999, pp. 337–346 URL: http://www.jstor.org/stable/25051266
- Peter Hall “On continuum percolation” In Ann. Probab. 13.4, 1985, pp. 1250–1266 URL: http://links.jstor.org/sici?sici=0091-1798(198511)13:4%3C1250:OCP%3E2.0.CO;2-U&origin=MSN
- “Lace expansion and mean-field behavior for the random connection model”, 2023 arXiv:1908.11356 [math.PR]
- Remco Hofstad “Random Graphs and Complex Networks. Vol. 1”, Cambridge Series in Statistical and Probabilistic Mathematics Cambridge University Press, Cambridge, 2017 DOI: 10.1017/9781316779422
- Remco Hofstad “Random Graphs and Complex Networks. Vol. 2”, Cambridge Series in Statistical and Probabilistic Mathematics Cambridge University Press, Cambridge, 2024 URL: https://doi.org/10.1017/9781316795552
- “Robustness of scale-free spatial networks” In Ann. Probab. 45.3, 2017, pp. 1680–1722 URL: https://doi.org/10.1214/16-AOP1098
- “Existence of subcritical percolation phases for generalised weight-dependent random connection models”, 2023 arXiv:2302.05396 [math.PR]
- Benedikt Jahnel, András Tóbiás and Elie Cali “Phase transitions for the Boolean model of continuum percolation for Cox point processes” In Braz. J. Probab. Stat. 36.1 Brazilian Statistical Association, 2022, pp. 20–44
- Joost Jorritsma, Júlia Komjáthy and Dieter Mitsche “Cluster-size decay in supercritical kernel-based spatial random graphs”, 2023 arXiv:2303.00724 [math.PR]
- Joost Jorritsma, Júlia Komjáthy and Dieter Mitsche “Cluster-size decay in supercritical long-range percolation”, 2023 arXiv:2303.00712 [math.PR]
- Joost Jorritsma, Júlia Komjáthy and Dieter Mitsche “Large deviations of the giant in supercritical kernel-based spatial random graphs”, 2024 arXiv:2404.02984 [math.PR]
- “Monte Carlo renormalization group study of the percolation problem of discs with a distribution of radii” In Z. Phys. B Condensed Matter 45.4, 1982, pp. 345–350 DOI: 10.1007/BF01321871
- “Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs” In Stoch. Process. Their Appl. 130.3, 2020, pp. 1309–1367 DOI: https://doi.org/10.1016/j.spa.2019.04.014
- “Hyperbolic geometry of complex networks” In Phys. Rev. E (3) 82.3, 036106, 2010 DOI: 10.1103/PhysRevE.82.036106
- “Lectures on the Poisson Process” Cambridge University Press, 2017 DOI: 10.1017/9781316104477
- Lukas Lüchtrath “Percolation in weight-dependent random connection models”, 2022 URL: https://kups.ub.uni-koeln.de/64064/
- Ronald Meester “Equality of critical densities in continuum percolation” In J. Appl. Probab. 32.1 Cambridge University Press, 1995, pp. 90–104 DOI: 10.2307/3214923
- Ronald Meester, Mathew D. Penrose and Anish Sarkar “The random connection model in high dimensions” In Stat. Probab. Lett. 35.2, 1997, pp. 145–153 DOI: https://doi.org/10.1016/S0167-7152(97)00008-4
- “Uniqueness of unbounded occupied and vacant components in Boolean models” In Ann. Appl. Probab. 4.3, 1994, pp. 933–951 URL: http://links.jstor.org/sici?sici=1050-5164(199408)4:3%3C933:UOUOAV%3E2.0.CO;2-8&origin=MSN
- “Continuum Percolation” 119, Cambridge Tracts in Mathematics Cambridge University Press, Cambridge, 1996 DOI: 10.1017/CBO9780511895357
- Christian Mönch “Inhomogeneous long-range percolation in the weak decay regime”, 2023 arXiv:2303.02027 [math.PR]
- “One-dimensional 1/|j−i|s1superscript𝑗𝑖𝑠1/|j-i|^{s}1 / | italic_j - italic_i | start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT percolation models: the existence of a transition for s≤2𝑠2s\leq 2italic_s ≤ 2” In Comm. Math. Phys. 104.4, 1986, pp. 547–571 URL: http://projecteuclid.org/euclid.cmp/1104115167
- M.D. Penrose “Random Geometric Graphs” 5, Oxford Studies in Probability Oxford University Press, Oxford, 2003 DOI: 10.1093/acprof:oso/9780198506263.001.0001
- Mathew D. Penrose “On a continuum percolation model” In Adv. in Appl. Probab. 23.3 Cambridge University Press, 1991, pp. 536–556 DOI: 10.2307/1427621
- Mathew D. Penrose “Continuum percolation and Euclidean minimal spanning trees in high dimensions” In Ann. Appl. Probab 6.2 Institute of Mathematical Statistics, 1996, pp. 528–544 DOI: 10.1214/aoap/1034968142
- “Percolation and conductivity: A computer study. I” In Phys. Rev. B 10 American Physical Society, 1974, pp. 1421–1434 DOI: 10.1103/PhysRevB.10.1421
- L.S. Schulman “Long range percolation in one dimension” In J. Phys. A 16.17, 1983, pp. L639–L641 URL: http://stacks.iop.org/0305-4470/16/639
- J.E. Yukich “Ultra-small scale-free geometric networks” In J. Appl. Probab. 43.3, 2006, pp. 665–677 DOI: 10.1239/jap/1158784937