Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resampling-free Particle Filters in High-dimensions (2404.13698v1)

Published 21 Apr 2024 in cs.RO, cs.LG, and stat.ML

Abstract: State estimation is crucial for the performance and safety of numerous robotic applications. Among the suite of estimation techniques, particle filters have been identified as a powerful solution due to their non-parametric nature. Yet, in high-dimensional state spaces, these filters face challenges such as 'particle deprivation' which hinders accurate representation of the true posterior distribution. This paper introduces a novel resampling-free particle filter designed to mitigate particle deprivation by forgoing the traditional resampling step. This ensures a broader and more diverse particle set, especially vital in high-dimensional scenarios. Theoretically, our proposed filter is shown to offer a near-accurate representation of the desired posterior distribution in high-dimensional contexts. Empirically, the effectiveness of our approach is underscored through a high-dimensional synthetic state estimation task and a 6D pose estimation derived from videos. We posit that as robotic systems evolve with greater degrees of freedom, particle filters tailored for high-dimensional state spaces will be indispensable.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. Cambridge, Mass.: MIT Press, 2005.
  2. M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions on signal processing, vol. 50, no. 2, pp. 174–188, 2002.
  3. Springer, 2001.
  4. R. Jonschkowski, D. Rastogi, and O. Brock, “Differentiable particle filters: End-to-end learning with algorithmic priors,” Robotics: Science and Systems (RSS), 2018.
  5. P. Karkus, S. Cai, and D. Hsu, “Differentiable slam-net: Learning particle slam for visual navigation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2815–2825, June 2021.
  6. A. Corenflos, J. Thornton, G. Deligiannidis, and A. Doucet, “Differentiable particle filtering via entropy-regularized optimal transport,” in Proceedings of the 38th International Conference on Machine Learning (M. Meila and T. Zhang, eds.), vol. 139 of Proceedings of Machine Learning Research, pp. 2100–2111, PMLR, 18–24 Jul 2021.
  7. J. D. Hol, T. B. Schon, and F. Gustafsson, “On resampling algorithms for particle filters,” in 2006 IEEE nonlinear statistical signal processing workshop, pp. 79–82, IEEE, 2006.
  8. N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to nonlinear/non-gaussian bayesian state estimation,” in IEE proceedings F (radar and signal processing), vol. 140, pp. 107–113, IET, 1993.
  9. M. Pulido and P. J. van Leeuwen, “Sequential monte carlo with kernel embedded mappings: The mapping particle filter,” Journal of Computational Physics, vol. 396, pp. 400–415, 2019.
  10. F. A. Maken, F. Ramos, and L. Ott, “Stein particle filter for nonlinear, non-gaussian state estimation,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5421–5428, 2022.
  11. Q. Liu and D. Wang, “Stein variational gradient descent: A general purpose bayesian inference algorithm,” Advances in neural information processing systems, vol. 29, 2016.
  12. D. Crisan and A. Doucet, “A survey of convergence results on particle filtering methods for practitioners,” IEEE Transactions on signal processing, vol. 50, no. 3, pp. 736–746, 2002.
  13. N. Chopin, “Central limit theorem for sequential monte carlo methods and its application to bayesian inference,” The Annals of Statistics, 2004.
  14. P. Del Moral, A. Doucet, and A. Jasra, “Sequential monte carlo samplers,” Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 68, no. 3, pp. 411–436, 2006.
  15. H. Lamb, Hydrodynamics. University Press, 1924.
  16. R. Cristoferi, “The laplace and the poisson equations in the whole space.,” 2017.
  17. B. Pachpatte, “A note on gronwall-bellman inequality,” Journal of Mathematical Analysis and Applications, vol. 44, no. 3, pp. 758–762, 1973.
  18. D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localization: Efficient position estimation for mobile robots,” Aaai/iaai, vol. 1999, no. 343-349, pp. 2–2, 1999.
  19. X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox, “Poserbpf: A rao-blackwellized particle filter for 6d object pose tracking,” in Robotics: Science and Systems (RSS), 2019.
  20. Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes,” Robotics: Science and Systems (RSS), 2018.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Akhilan Boopathy (14 papers)
  2. Aneesh Muppidi (4 papers)
  3. Peggy Yang (2 papers)
  4. Abhiram Iyer (8 papers)
  5. William Yue (8 papers)
  6. Ila Fiete (25 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com