Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trojan Detection in Large Language Models: Insights from The Trojan Detection Challenge (2404.13660v1)

Published 21 Apr 2024 in cs.CL

Abstract: LLMs have demonstrated remarkable capabilities in various domains, but their vulnerability to trojan or backdoor attacks poses significant security risks. This paper explores the challenges and insights gained from the Trojan Detection Competition 2023 (TDC2023), which focused on identifying and evaluating trojan attacks on LLMs. We investigate the difficulty of distinguishing between intended and unintended triggers, as well as the feasibility of reverse engineering trojans in real-world scenarios. Our comparative analysis of various trojan detection methods reveals that achieving high Recall scores is significantly more challenging than obtaining high Reverse-Engineering Attack Success Rate (REASR) scores. The top-performing methods in the competition achieved Recall scores around 0.16, comparable to a simple baseline of randomly sampling sentences from a distribution similar to the given training prefixes. This finding raises questions about the detectability and recoverability of trojans inserted into the model, given only the harmful targets. Despite the inability to fully solve the problem, the competition has led to interesting observations about the viability of trojan detection and improved techniques for optimizing LLM input prompts. The phenomenon of unintended triggers and the difficulty in distinguishing them from intended triggers highlights the need for further research into the robustness and interpretability of LLMs. The TDC2023 has provided valuable insights into the challenges and opportunities associated with trojan detection in LLMs, laying the groundwork for future research in this area to ensure their safety and reliability in real-world applications.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets