Full Galois groups of polynomials with slowly growing coefficients (2404.13559v2)
Abstract: Choose a polynomial $f$ uniformly at random from the set of all monic polynomials of degree $n$ with integer coefficients in the box $[-L,L]n$. The main result of the paper asserts that if $L=L(n)$ grows to infinity, then the Galois group of $f$ is the full symmetric group, asymptotically almost surely, as $n\to \infty$. When $L$ grows rapidly to infinity, say $L>n7$, this theorem follows from a result of Gallagher. When $L$ is bounded, the analog of the theorem is open, while the state-of-the-art is that the Galois group is large in the sense that it contains the alternating group (if $L< 17$, it is conditional on the general Riemann hypothesis). Hence the most interesting case of the theorem is when $L$ grows slowly to infinity. Our method works for more general independent coefficients.
- Quantitative Hilbert irreducibility and almost prime values of polynomial discriminants. Int. Math. Res. Not. IMRN, (3):2188–2214, 2023.
- Probabilistic Galois theory–the square discriminant case. Bull. Lond. Math. Soc., in press, expected 2024.
- Irreducibility of random polynomials: general measures. Invent. Math., 233(3):1041–1120, 2023.
- L. Bary-Soroker and G. Kozma. Irreducible polynomials of bounded height. Duke Math. J., 169(4):579–598, 2020.
- E. R. Berlekamp. Algebraic coding theory (revised edition). World Scientific, 2015.
- M. Bhargava. A proof of van der Waerden’s conjecture on random Galois groups of polynomials. Pure Appl. Math. Q., 19(1):45–60, 2023.
- Linear and quadratic uniformity of the Möbius function over 𝔽q[t]subscript𝔽𝑞delimited-[]𝑡\mathbb{F}_{q}[t]blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT [ italic_t ]. Mathematika, 65(3):505–529, 2019.
- A. Bloch and G. Pólya. On the roots of certain algebraic equations. Proc. London Math. Soc. (2), 33(2):102–114, 1931.
- E. Breuillard and P. P. Varjú. Irreducibility of random polynomials of large degree. Acta Mathematica, 223(2):195–249, 2019.
- R. Chela. Reducible polynomials. J. London Math. Soc., 38:183–188, 1963.
- S. Chow and R. Dietmann. Enumerative Galois theory for cubics and quartics. Adv. Math., 372:107282, 37, 2020.
- S. Chow and R. Dietmann. Towards van der Waerden’s conjecture. Trans. Amer. Math. Soc., 376(4):2739–2785, 2023.
- R. Dietmann. On the distribution of Galois groups. Mathematika, 58(1):35–44, 2011.
- P. Erdős and P. Turán. On the distribution of roots of polynomials. Ann. of Math. (2), 51:105–119, 1950.
- P. X. Gallagher. The large sieve and probabilistic Galois theory. In Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), volume Vol. XXIV of Proc. Sympos. Pure Math., pages 91–101. Amer. Math. Soc., Providence, RI, 1973.
- D. Hilbert. Ueber die Irreducibilität ganzer rationaler Functionen mit ganzzahligen Coefficienten. J. Reine Angew. Math., 110:104–129, 1892.
- M. Kac. On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc., 49:314–320, 1943.
- H.-W. Knobloch. Die Seltenheit der reduziblen Polynome. Jber. Deutsch. Math.-Verein., 59:12–19, 1956.
- S. V. Konyagin. On the number of irreducible polynomials with 0,1010,10 , 1 coefficients. Acta Arith., 88(4):333–350, 1999.
- E. Kowalski. The large sieve and its applications, volume 175 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2008. Arithmetic geometry, random walks and discrete groups.
- On the number of real roots of a random algebraic equation. J. London Math. Soc., 13(4):288–295, 1938.
- A. M. Odlyzko and B. Poonen. Zeros of polynomials with 0,1010,10 , 1 coefficients. Enseign. Math. (2), 39(3-4):317–348, 1993.
- S. Porritt. A note on exponential-möbius sums over 𝔽q[t]subscript𝔽𝑞delimited-[]𝑡\mathbb{F}_{q}[t]blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT [ italic_t ]. Finite Fields and Their Applications, 51:298–305, 2018.
- B. L. van der Waerden. Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt. Monatsh. Math. Phys., 43(1):133–147, 1936.