Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning for climate physics and simulations (2404.13227v2)

Published 20 Apr 2024 in physics.ao-ph, nlin.CD, physics.comp-ph, physics.flu-dyn, and physics.geo-ph

Abstract: We discuss the emerging advances and opportunities at the intersection of ML and climate physics, highlighting the use of ML techniques, including supervised, unsupervised, and equation discovery, to accelerate climate knowledge discoveries and simulations. We delineate two distinct yet complementary aspects: (1) ML for climate physics and (2) ML for climate simulations. While physics-free ML-based models, such as ML-based weather forecasting, have demonstrated success when data is abundant and stationary, the physics knowledge and interpretability of ML models become crucial in the small-data/non-stationary regime to ensure generalizability. Given the absence of observations, the long-term future climate falls into the small-data regime. Therefore, ML for climate physics holds a critical role in addressing the challenges of ML for climate simulations. We emphasize the need for collaboration among climate physics, ML theory, and numerical analysis to achieve reliable ML-based models for climate applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (150)
  1. R. Keisler, “Forecasting global weather with graph neural networks,” arXiv preprint arXiv:2202.07575, 2022.
  2. J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli, P. Hassanzadeg, K. Kashinath, and A. Anandkumar, “Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators,” arXiv preprint arXiv:2202.11214, 2022.
  3. K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate medium-range global weather forecasting with 3d neural networks,” Nature, vol. 619, no. 7970, pp. 533–538, 2023.
  4. R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet, S. Ravuri, T. Ewalds, Z. Eaton-Rosen, W. Hu, et al., “Learning skillful medium-range global weather forecasting,” Science, vol. 382, no. 6677, pp. 1416–1421, 2023.
  5. L. Chen, X. Zhong, F. Zhang, Y. Cheng, Y. Xu, Y. Qi, and H. Li, “Fuxi: a cascade machine learning forecasting system for 15-day global weather forecast,” npj Climate and Atmospheric Science, vol. 6, no. 1, p. 190, 2023.
  6. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.
  7. T. Chen and H. Chen, “Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems,” IEEE transactions on neural networks, vol. 6, no. 4, pp. 911–917, 1995.
  8. S. Ravuri, K. Lenc, M. Willson, D. Kangin, R. Lam, P. Mirowski, M. Fitzsimons, M. Athanassiadou, S. Kashem, S. Madge, et al., “Skilful precipitation nowcasting using deep generative models of radar,” Nature, vol. 597, no. 7878, pp. 672–677, 2021.
  9. Z. Ben-Bouallegue, M. C. Clare, L. Magnusson, E. Gascon, M. Maier-Gerber, M. Janousek, M. Rodwell, F. Pinault, J. S. Dramsch, S. T. Lang, et al., “The rise of data-driven weather forecasting,” arXiv preprint arXiv:2307.10128, 2023.
  10. Y.-G. Ham, J.-H. Kim, and J.-J. Luo, “Deep learning for multi-year enso forecasts,” Nature, vol. 573, no. 7775, pp. 568–572, 2019.
  11. S. Rasp, S. Hoyer, A. Merose, I. Langmore, P. Battaglia, T. Russel, A. Sanchez-Gonzalez, V. Yang, R. Carver, S. Agrawal, et al., “Weatherbench 2: A benchmark for the next generation of data-driven global weather models,” arXiv preprint arXiv:2308.15560, 2023.
  12. J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach,” Physical review letters, vol. 120, no. 2, p. 024102, 2018.
  13. P. D. Dueben and P. Bauer, “Challenges and design choices for global weather and climate models based on machine learning,” Geoscientific Model Development, vol. 11, no. 10, pp. 3999–4009, 2018.
  14. J. A. Weyn, D. R. Durran, and R. Caruana, “Can machines learn to predict weather? using deep learning to predict gridded 500-hpa geopotential height from historical weather data,” Journal of Advances in Modeling Earth Systems, vol. 11, no. 8, pp. 2680–2693, 2019.
  15. A. Chattopadhyay, E. Nabizadeh, and P. Hassanzadeh, “Analog forecasting of extreme-causing weather patterns using deep learning,” Journal of Advances in Modeling Earth Systems, vol. 12, no. 2, p. e2019MS001958, 2020.
  16. S. Rasp, P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and N. Thuerey, “Weatherbench: a benchmark data set for data-driven weather forecasting,” Journal of Advances in Modeling Earth Systems, vol. 12, no. 11, p. e2020MS002203, 2020.
  17. S. Rasp and N. Thuerey, “Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench,” Journal of Advances in Modeling Earth Systems, vol. 13, no. 2, p. e2020MS002405, 2021.
  18. M. C. A. Clare, O. Jamil, and C. J. Morcrette, “Combining distribution-based neural networks to predict weather forecast probabilities,” Quarterly Journal of the Royal Meteorological Society, vol. 147, pp. 4337–4357, Oct. 2021.
  19. I. Price, A. Sanchez-Gonzalez, F. Alet, T. Ewalds, A. El-Kadi, J. Stott, S. Mohamed, P. Battaglia, R. Lam, and M. Willson, “Gencast: Diffusion-based ensemble forecasting for medium-range weather,” arXiv preprint arXiv:2312.15796, 2023.
  20. D. Watson-Parris, “Machine learning for weather and climate are worlds apart,” Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, p. 20200098, 2021.
  21. T. Schneider, S. Behera, G. Boccaletti, C. Deser, K. Emanuel, R. Ferrari, L. R. Leung, N. Lin, T. Müller, A. Navarra, et al., “Harnessing ai and computing to advance climate modelling and prediction,” nature climate change, vol. 13, no. 9, pp. 887–889, 2023.
  22. T. N. Palmer, “A nonlinear dynamical perspective on climate prediction,” Journal of Climate, vol. 12, no. 2, pp. 575–591, 1999.
  23. I. M. Held, “The gap between simulation and understanding in climate modeling,” Bulletin of the American Meteorological Society, vol. 86, no. 11, pp. 1609–1614, 2005.
  24. M. Sonnewald, C. Wunsch, and P. Heimbach, “Unsupervised learning reveals geography of global ocean dynamical regions,” Earth and Space Science, vol. 6, no. 5, pp. 784–794, 2019.
  25. Q. Xiao, D. Balwada, C. S. Jones, M. Herrero-González, K. S. Smith, and R. Abernathey, “Reconstruction of surface kinematics from sea surface height using neural networks,” Journal of Advances in Modeling Earth Systems, vol. 15, no. 10, p. e2023MS003709, 2023.
  26. J. Yuval and P. A. O’Gorman, “Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions,” Nature communications, vol. 11, no. 1, p. 3295, 2020.
  27. R. Wang, R. Walters, and R. Yu, “Incorporating symmetry into deep dynamics models for improved generalization,” ICLR, 2021.
  28. G. Walker, “World weather. vol. 54,” QJR Meteorol Soc, pp. 79–87, 1928.
  29. S. Corti, F. Molteni, and T. Palmer, “Signature of recent climate change in frequencies of natural atmospheric circulation regimes,” Nature, vol. 398, no. 6730, pp. 799–802, 1999.
  30. D. W. Thompson and S. Solomon, “Interpretation of recent southern hemisphere climate change,” Science, vol. 296, no. 5569, pp. 895–899, 2002.
  31. A. H. Monahan, J. C. Fyfe, M. H. Ambaum, D. B. Stephenson, and G. R. North, “Empirical orthogonal functions: The medium is the message,” Journal of Climate, vol. 22, no. 24, pp. 6501–6514, 2009.
  32. J. Page, M. P. Brenner, and R. R. Kerswell, “Revealing the state space of turbulence using machine learning,” Physical Review Fluids, vol. 6, no. 3, p. 034402, 2021.
  33. B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear embeddings of nonlinear dynamics,” Nature communications, vol. 9, no. 1, p. 4950, 2018.
  34. S. Shamekh, K. D. Lamb, Y. Huang, and P. Gentine, “Implicit learning of convective organization explains precipitation stochasticity,” Proceedings of the National Academy of Sciences, vol. 120, no. 20, p. e2216158120, 2023.
  35. M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and f. Prabhat, “Deep learning and process understanding for data-driven earth system science,” Nature, vol. 566, no. 7743, pp. 195–204, 2019.
  36. J. C. Landy, G. J. Dawson, M. Tsamados, M. Bushuk, J. C. Stroeve, S. E. Howell, T. Krumpen, D. G. Babb, A. S. Komarov, H. D. Heorton, et al., “A year-round satellite sea-ice thickness record from cryosat-2,” Nature, vol. 609, no. 7927, pp. 517–522, 2022.
  37. S. A. Martin, G. Manucharyan, and P. Klein, “Deep learning improves global satellite observations of ocean eddy dynamics,” 2024.
  38. S. Rezvanbehbahani, L. A. Stearns, R. Keramati, S. Shankar, and C. van der Veen, “Significant contribution of small icebergs to the freshwater budget in greenland fjords,” Communications Earth & Environment, vol. 1, no. 1, p. 31, 2020.
  39. T. Surawy-Stepney, A. E. Hogg, S. L. Cornford, and B. J. Davison, “Episodic dynamic change linked to damage on the thwaites glacier ice tongue,” Nature Geoscience, vol. 16, no. 1, pp. 37–43, 2023.
  40. C.-Y. Lai, J. Kingslake, M. G. Wearing, P.-H. C. Chen, P. Gentine, H. Li, J. J. Spergel, and J. M. van Wessem, “Vulnerability of antarctica’s ice shelves to meltwater-driven fracture,” Nature, vol. 584, pp. 574–578, 2020.
  41. E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of atmospheric sciences, vol. 20, no. 2, pp. 130–141, 1963.
  42. A. Tarantola, Inverse problem theory and methods for model parameter estimation. SIAM, 2005.
  43. Cambridge university press, 2003.
  44. A. J. Geer, “Learning earth system models from observations: machine learning or data assimilation?,” Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, p. 20200089, 2021.
  45. J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino, “Combining data assimilation and machine learning to infer unresolved scale parametrization,” Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, p. 20200086, 2021.
  46. S. Cheng, C. Quilodrán-Casas, S. Ouala, A. Farchi, C. Liu, P. Tandeo, R. Fablet, D. Lucor, B. Iooss, J. Brajard, et al., “Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 6, pp. 1361–1387, 2023.
  47. A. Farchi, P. Laloyaux, M. Bonavita, and M. Bocquet, “Using machine learning to correct model error in data assimilation and forecast applications,” Quarterly Journal of the Royal Meteorological Society, vol. 147, no. 739, pp. 3067–3084, 2021.
  48. J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino, “Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the lorenz 96 model,” Journal of computational science, vol. 44, p. 101171, 2020.
  49. M. A. Iglesias, K. J. Law, and A. M. Stuart, “Ensemble kalman methods for inverse problems,” Inverse Problems, vol. 29, no. 4, p. 045001, 2013.
  50. E. Cleary, A. Garbuno-Inigo, S. Lan, T. Schneider, and A. M. Stuart, “Calibrate, emulate, sample,” Journal of Computational Physics, vol. 424, p. 109716, 2021.
  51. O. R. Dunbar, A. Garbuno-Inigo, T. Schneider, and A. M. Stuart, “Calibration and uncertainty quantification of convective parameters in an idealized gcm,” Journal of Advances in Modeling Earth Systems, vol. 13, no. 9, p. e2020MS002454, 2021.
  52. I. Lopez-Gomez, C. Christopoulos, H. L. Langeland Ervik, O. R. Dunbar, Y. Cohen, and T. Schneider, “Training physics-based machine-learning parameterizations with gradient-free ensemble kalman methods,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 8, p. e2022MS003105, 2022.
  53. L. Mansfield and A. Sheshadri, “Calibration and uncertainty quantification of a gravity wave parameterization: A case study of the quasi-biennial oscillation in an intermediate complexity climate model,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 11, p. e2022MS003245, 2022.
  54. A. N. Souza, G. Wagner, A. Ramadhan, B. Allen, V. Churavy, J. Schloss, J. Campin, C. Hill, A. Edelman, J. Marshall, et al., “Uncertainty quantification of ocean parameterizations: Application to the k-profile-parameterization for penetrative convection,” Journal of Advances in Modeling Earth Systems, vol. 12, no. 12, p. e2020MS002108, 2020.
  55. G. Evensen, “Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics,” Journal of Geophysical Research: Oceans, vol. 99, no. C5, pp. 10143–10162, 1994.
  56. P. L. Houtekamer and F. Zhang, “Review of the ensemble kalman filter for atmospheric data assimilation,” Monthly Weather Review, vol. 144, no. 12, pp. 4489–4532, 2016.
  57. N. B. Kovachki and A. M. Stuart, “Ensemble kalman inversion: a derivative-free technique for machine learning tasks,” Inverse Problems, vol. 35, no. 9, p. 095005, 2019.
  58. D. Watson-Parris, A. Williams, L. Deaconu, and P. Stier, “Model calibration using esem v1. 1.0–an open, scalable earth system emulator,” Geoscientific Model Development, vol. 14, no. 12, pp. 7659–7672, 2021.
  59. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational physics, vol. 378, pp. 686–707, 2019.
  60. G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-informed machine learning,” Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.
  61. R. Eusebi, G. A. Vecchi, C.-Y. Lai, and M. Tong, “Realistic tropical cyclone wind and pressure fields can be reconstructed from sparse data using deep learning,” Communications Earth & Environment, vol. 5, no. 1, p. 8, 2024.
  62. Y. Wang, C.-Y. Lai, and C. Cowen-Breen, “Discovering the rheology of antarctic ice shelves via physics-informed deep learning,” 2022.
  63. X. Lu, X. Wang, M. Tong, and V. Tallapragada, “Gsi-based, continuously cycled, dual-resolution hybrid ensemble–variational data assimilation system for hwrf: System description and experiments with edouard (2014),” Monthly Weather Review, vol. 145, no. 12, pp. 4877–4898, 2017.
  64. D. Kochkov, J. Yuval, I. Langmore, P. Norgaard, J. Smith, G. Mooers, J. Lottes, S. Rasp, P. Düben, M. Klöwer, S. Hatfield, P. Battaglia, A. Sanchez-Gonzalez, M. Willson, M. P. Brenner, and S. Hoyer, “Neural general circulation models,” 2023.
  65. G. Jouvet and G. Cordonnier, “Ice-flow model emulator based on physics-informed deep learning,” Journal of Glaciology, pp. 1–15, 2023.
  66. M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental data,” science, vol. 324, no. 5923, pp. 81–85, 2009.
  67. S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” Proceedings of the national academy of sciences, vol. 113, no. 15, pp. 3932–3937, 2016.
  68. T. Schneider, A. M. Stuart, and J.-L. Wu, “Ensemble kalman inversion for sparse learning of dynamical systems from time-averaged data,” Journal of Computational Physics, vol. 470, p. 111559, 2022.
  69. M. Lang, P. Jan Van Leeuwen, and P. Browne, “A systematic method of parameterisation estimation using data assimilation,” Tellus A: Dynamic Meteorology and Oceanography, vol. 68, no. 1, p. 29012, 2016.
  70. R. Mojgani, A. Chattopadhyay, and P. Hassanzadeh, “Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case,” Journal of Advances in Modeling Earth Systems, 2024.
  71. N. Chen and Y. Zhang, “A causality-based learning approach for discovering the underlying dynamics of complex systems from partial observations with stochastic parameterization,” Physica D: Nonlinear Phenomena, vol. 449, p. 133743, 2023.
  72. L. Zanna and T. Bolton, “Data-driven equation discovery of ocean mesoscale closures,” Geophysical Research Letters, vol. 47, no. 17, p. e2020GL088376, 2020.
  73. J. A. Anstey and L. Zanna, “A deformation-based parametrization of ocean mesoscale eddy reynolds stresses,” Ocean Modelling, vol. 112, pp. 99–111, 2017.
  74. K. Jakhar, Y. Guan, R. Mojgani, A. Chattopadhyay, P. Hassanzadeh, and L. Zanna, “Learning closed-form equations for subgrid-scale closures from high-fidelity data: Promises and challenges,” arXiv preprint arXiv:2306.05014, 2023.
  75. J. R. Koza, “Genetic programming as a means for programming computers by natural selection,” Statistics and computing, vol. 4, pp. 87–112, 1994.
  76. Y. Chen, Y. Luo, Q. Liu, H. Xu, and D. Zhang, “Symbolic genetic algorithm for discovering open-form partial differential equations (sga-pde),” Physical Review Research, vol. 4, no. 2, p. 023174, 2022.
  77. A. Grundner, T. Beucler, P. Gentine, and V. Eyring, “Data-driven equation discovery of a cloud cover parameterization,” Journal of Advances in Modeling Earth Systems, vol. 16, no. 3, p. e2023MS003763, 2024.
  78. A. Ross, Z. Li, P. Perezhogin, C. Fernandez-Granda, and L. Zanna, “Benchmarking of machine learning ocean subgrid parameterizations in an idealized model,” Journal of Advances in Modeling Earth Systems, vol. 15, no. 1, 2023.
  79. E. Hawkins and R. Sutton, “The potential to narrow uncertainty in regional climate predictions,” Bulletin of the American Meteorological Society, vol. 90, no. 8, pp. 1095–1108, 2009.
  80. J. Smagorinsky, “General circulation experiments with the primitive equations: I. the basic experiment,” Monthly weather review, vol. 91, no. 3, pp. 99–164, 1963.
  81. Y. Guan, A. Chattopadhyay, A. Subel, and P. Hassanzadeh, “Stable a posteriori les of 2d turbulence using convolutional neural networks: Backscattering analysis and generalization to higher re via transfer learning,” Journal of Computational Physics, vol. 458, p. 111090, 2022.
  82. T. Bolton and L. Zanna, “Applications of deep learning to ocean data inference and subgrid parameterization,” Journal of Advances in Modeling Earth Systems, vol. 11, no. 1, pp. 376–399, 2019.
  83. A. Sane, B. G. Reichl, A. Adcroft, and L. Zanna, “Parameterizing vertical mixing coefficients in the ocean surface boundary layer using neural networks,” Journal of Advances in Modeling Earth Systems, vol. 15, no. 10, p. e2023MS003890, 2023.
  84. P. Gentine, M. Pritchard, S. Rasp, G. Reinaudi, and G. Yacalis, “Could machine learning break the convection parameterization deadlock?,” Geophysical Research Letters, vol. 45, no. 11, pp. 5742–5751, 2018.
  85. P. Gentine, V. Eyring, and T. Beucler, “Deep learning for the parametrization of subgrid processes in climate models,” Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences, pp. 307–314, 2021.
  86. J. Yuval and P. A. O’Gorman, “Neural-network parameterization of subgrid momentum transport in the atmosphere,” Journal of Advances in Modeling Earth Systems, vol. 15, no. 4, p. e2023MS003606, 2023.
  87. S. Rasp, M. S. Pritchard, and P. Gentine, “Deep learning to represent subgrid processes in climate models,” Proceedings of the National Academy of Sciences, vol. 115, no. 39, pp. 9684–9689, 2018.
  88. A. Grundner, T. Beucler, P. Gentine, F. Iglesias-Suarez, M. A. Giorgetta, and V. Eyring, “Deep learning based cloud cover parameterization for icon,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 12, p. e2021MS002959, 2022.
  89. T. Arcomano, I. Szunyogh, A. Wikner, B. R. Hunt, and E. Ott, “A hybrid atmospheric model incorporating machine learning can capture dynamical processes not captured by its physics-based component,” Geophysical Research Letters, vol. 50, no. 8, p. e2022GL102649, 2023.
  90. O. Watt-Meyer, N. D. Brenowitz, S. K. Clark, B. Henn, A. Kwa, J. McGibbon, W. A. Perkins, L. Harris, and C. S. Bretherton, “Neural network parameterization of subgrid-scale physics from a realistic geography global storm-resolving simulation,” Journal of Advances in Modeling Earth Systems, vol. 16, no. 2, p. e2023MS003668, 2024.
  91. D. Matsuoka, S. Watanabe, K. Sato, S. Kawazoe, W. Yu, and S. Easterbrook, “Application of deep learning to estimate atmospheric gravity wave parameters in reanalysis data sets,” Geophysical Research Letters, vol. 47, no. 19, p. e2020GL089436, 2020.
  92. Z. I. Espinosa, A. Sheshadri, G. R. Cain, E. P. Gerber, and K. J. DallaSanta, “Machine learning gravity wave parameterization generalizes to capture the qbo and response to increased co2,” Geophysical Research Letters, vol. 49, no. 8, p. e2022GL098174, 2022.
  93. S. C. Hardiman, A. A. Scaife, A. van Niekerk, R. Prudden, A. Owen, S. V. Adams, T. Dunstan, N. J. Dunstone, and S. Madge, “Machine learning for nonorographic gravity waves in a climate model,” Artificial intelligence for the Earth systems, vol. 2, no. 4, p. e220081, 2023.
  94. H. A. Pahlavan, P. Hassanzadeh, and M. J. Alexander, “Explainable offline-online training of neural networks for parameterizations: A 1d gravity wave-qbo testbed in the small-data regime,” Geophysical Research Letters, vol. 51, no. 2, p. e2023GL106324, 2024.
  95. H. Frezat, J. Le Sommer, R. Fablet, G. Balarac, and R. Lguensat, “A posteriori learning for quasi-geostrophic turbulence parametrization,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 11, p. e2022MS003124, 2022.
  96. L. Beusch, L. Gudmundsson, and S. I. Seneviratne, “Emulating earth system model temperatures with mesmer: from global mean temperature trajectories to grid-point-level realizations on land,” Earth System Dynamics, vol. 11, no. 1, pp. 139–159, 2020.
  97. C. Tebaldi, A. Snyder, and K. Dorheim, “Stitches: creating new scenarios of climate model output by stitching together pieces of existing simulations,” Earth System Dynamics, vol. 13, no. 4, pp. 1557–1609, 2022.
  98. D. Watson-Parris, Y. Rao, D. Olivié, Ø. Seland, P. Nowack, G. Camps-Valls, P. Stier, S. Bouabid, M. Dewey, E. Fons, et al., “Climatebench v1. 0: A benchmark for data-driven climate projections,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 10, p. e2021MS002954, 2022.
  99. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, et al., “The era5 global reanalysis,” Quarterly Journal of the Royal Meteorological Society, vol. 146, no. 730, pp. 1999–2049, 2020.
  100. O. Watt-Meyer, G. Dresdner, J. McGibbon, S. K. Clark, B. Henn, J. Duncan, N. D. Brenowitz, K. Kashinath, M. S. Pritchard, B. Bonev, et al., “Ace: A fast, skillful learned global atmospheric model for climate prediction,” arXiv preprint arXiv:2310.02074, 2023.
  101. J. P. Duncan, E. Wu, J.-C. Golaz, P. M. Caldwell, O. Watt-Meyer, S. K. Clark, J. McGibbon, G. Dresdner, K. Kashinath, B. Bonev, et al., “Application of the ai2 climate emulator to e3smv2’s global atmosphere model, with a focus on precipitation fidelity,” Authorea Preprints, 2024.
  102. S. Bire, B. Lütjens, K. Azizzadenesheli, A. Anandkumar, and C. N. Hill, “Ocean emulation with fourier neural operators: Double gyre,” Authorea Preprints, 2023.
  103. A. Subel and L. Zanna, “Building ocean climate emulators,” arXiv preprint arXiv:2402.04342, 2024.
  104. T. R. Andersson, J. S. Hosking, M. Pérez-Ortiz, B. Paige, A. Elliott, C. Russell, S. Law, D. C. Jones, J. Wilkinson, T. Phillips, et al., “Seasonal arctic sea ice forecasting with probabilistic deep learning,” Nature communications, vol. 12, no. 1, p. 5124, 2021.
  105. Y. Wang, X. Yuan, Y. Ren, M. Bushuk, Q. Shu, C. Li, and X. Li, “Subseasonal prediction of regional antarctic sea ice by a deep learning model,” Geophysical Research Letters, vol. 50, no. 17, p. e2023GL104347, 2023.
  106. Y. Zhu, M. Qin, P. Dai, S. Wu, Z. Fu, Z. Chen, L. Zhang, Y. Wang, and Z. Du, “Deep learning-based seasonal forecast of sea ice considering atmospheric conditions,” Journal of Geophysical Research: Atmospheres, vol. 128, no. 24, p. e2023JD039521, 2023.
  107. A. Chattopadhyay and P. Hassanzadeh, “Long-term instabilities of deep learning-based digital twins of the climate system: The cause and a solution,” arXiv preprint arXiv:2304.07029, 2023.
  108. T. Selz and G. C. Craig, “Can artificial intelligence-based weather prediction models simulate the butterfly effect?,” Geophysical Research Letters, vol. 50, no. 20, p. e2023GL105747, 2023.
  109. K. Kashinath, M. Mustafa, J. Wu, C. Jiang, R. Wang, A. Chattopadhyay, A. Singh, et al., “Physics-informed machine learning: case studies for weather and climate modelling,” Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, p. 20200093, 2021.
  110. T. Beucler, M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P. Gentine, “Enforcing analytic constraints in neural networks emulating physical systems,” Physical Review Letters, vol. 126, no. 9, p. 098302, 2021.
  111. A. Chattopadhyay, M. Mustafa, P. Hassanzadeh, E. Bach, and K. Kashinath, “Towards physics-inspired data-driven weather forecasting: integrating data assimilation with a deep spatial-transformer-based u-net in a case study with era5,” Geoscientific Model Development, vol. 15, no. 5, pp. 2221–2237, 2022.
  112. Y. Guan, A. Subel, A. Chattopadhyay, and P. Hassanzadeh, “Learning physics-constrained subgrid-scale closures in the small-data regime for stable and accurate les,” Physica D: Nonlinear Phenomena, vol. 443, p. 133568, 2023.
  113. A. F. Psaros, X. Meng, Z. Zou, L. Guo, and G. E. Karniadakis, “Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons,” Journal of Computational Physics, vol. 477, p. 111902, 2023.
  114. M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya, et al., “A review of uncertainty quantification in deep learning: Techniques, applications and challenges,” Information fusion, vol. 76, pp. 243–297, 2021.
  115. M. Sonnewald and R. Lguensat, “Revealing the impact of global heating on north atlantic circulation using transparent machine learning,” Journal of Advances in Modeling Earth Systems, vol. 13, no. 8, p. e2021MS002496, 2021.
  116. W. Yik, M. Sonnewald, M. C. A. Clare, and R. Lguensat, “Southern Ocean Dynamics Under Climate Change: New Knowledge Through Physics-Guided Machine Learning,” arXiv e-prints, p. arXiv:2310.13916, Oct. 2023.
  117. L. A. Mansfield and A. Sheshadri, “Uncertainty Quantification of a Machine Learning Subgrid-Scale Parameterization for Atmospheric Gravity Waves,” ESS Open Archive, Feb. 2024.
  118. Y. Q. Sun, H. A. Pahlavan, A. Chattopadhyay, P. Hassanzadeh, S. W. Lubis, M. J. Alexander, E. Gerber, A. Sheshadri, and Y. Guan, “Data imbalance, uncertainty quantification, and generalization via transfer learning in data-driven parameterizations: Lessons from the emulation of gravity wave momentum transport in waccm,” arXiv preprint arXiv:2311.17078, 2023.
  119. S. Dräger and M. Sonnewald, “The Importance of Architecture Choice in Deep Learning for Climate Applications,” arXiv e-prints, p. arXiv:2402.13979, Feb. 2024.
  120. A. P. Guillaumin and L. Zanna, “Stochastic-deep learning parameterization of ocean momentum forcing,” Journal of Advances in Modeling Earth Systems, vol. 13, no. 9, p. e2021MS002534, 2021.
  121. D. Foster, D. J. Gagne, and D. B. Whitt, “Probabilistic machine learning estimation of ocean mixed layer depth from dense satellite and sparse in situ observations,” Journal of Advances in Modeling Earth Systems, vol. 13, no. 12, p. e2021MS002474, 2021.
  122. E. A. Barnes and R. J. Barnes, “Controlled abstention neural networks for identifying skillful predictions for regression problems,” Journal of Advances in Modeling Earth Systems, vol. 13, no. 12, p. e2021MS002575, 2021.
  123. K. Haynes, R. Lagerquist, M. McGraw, K. Musgrave, and I. Ebert-Uphoff, “Creating and evaluating uncertainty estimates with neural networks for environmental-science applications,” Artificial Intelligence for the Earth Systems, vol. 2, no. 2, p. 220061, 2023.
  124. N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and A. Courville, “On the spectral bias of neural networks,” in International conference on machine learning, pp. 5301–5310, PMLR, 2019.
  125. Z.-Q. J. Xu, Y. Zhang, T. Luo, Y. Xiao, and Z. Ma, “Frequency principle: Fourier analysis sheds light on deep neural networks,” arXiv preprint arXiv:1901.06523, 2019.
  126. A. Rybchuk, M. Hassanaly, N. Hamilton, P. Doubrawa, M. J. Fulton, and L. A. Martínez-Tossas, “Ensemble flow reconstruction in the atmospheric boundary layer from spatially limited measurements through latent diffusion models,” Physics of Fluids, vol. 35, no. 12, 2023.
  127. M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. Barron, and R. Ng, “Fourier features let networks learn high frequency functions in low dimensional domains,” Advances in neural information processing systems, vol. 33, pp. 7537–7547, 2020.
  128. S. Wang, H. Wang, and P. Perdikaris, “On the eigenvector bias of fourier feature networks: From regression to solving multi-scale pdes with physics-informed neural networks,” Computer Methods in Applied Mechanics and Engineering, vol. 384, p. 113938, 2021.
  129. Y. Wang and C.-Y. Lai, “Multi-stage neural networks: Function approximator of machine precision,” Journal of Computational Physics, p. 112865, 2024.
  130. G. Miloshevich, B. Cozian, P. Abry, P. Borgnat, and F. Bouchet, “Probabilistic forecasts of extreme heatwaves using convolutional neural networks in a regime of lack of data,” Physical Review Fluids, vol. 8, no. 4, p. 040501, 2023.
  131. I. Lopez-Gomez, A. McGovern, S. Agrawal, and J. Hickey, “Global extreme heat forecasting using neural weather models,” Artificial Intelligence for the Earth Systems, no. 1, p. e220035, 2023.
  132. S. H. Rudy and T. P. Sapsis, “Output-weighted and relative entropy loss functions for deep learning precursors of extreme events,” Physica D: Nonlinear Phenomena, vol. 443, p. 133570, 2023.
  133. F. Ragone, J. Wouters, and F. Bouchet, “Computation of extreme heat waves in climate models using a large deviation algorithm,” Proceedings of the National Academy of Sciences, vol. 115, no. 1, pp. 24–29, 2018.
  134. J. Finkel, R. J. Webber, E. P. Gerber, D. S. Abbot, and J. Weare, “Learning forecasts of rare stratospheric transitions from short simulations,” Monthly Weather Review, vol. 149, no. 11, pp. 3647–3669, 2021.
  135. A. Subel, Y. Guan, A. Chattopadhyay, and P. Hassanzadeh, “Explaining the physics of transfer learning in data-driven turbulence modeling,” PNAS nexus, vol. 2, no. 3, p. pgad015, 2023.
  136. T. Beucler, P. Gentine, J. Yuval, A. Gupta, L. Peng, J. Lin, S. Yu, S. Rasp, F. Ahmed, P. A. O’Gorman, et al., “Climate-invariant machine learning,” Science Advances, vol. 10, no. 6, p. eadj7250, 2024.
  137. Z. Shen, A. Sridhar, Z. Tan, A. Jaruga, and T. Schneider, “A library of large-eddy simulations forced by global climate models,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 3, p. e2021MS002631, 2022.
  138. Y. Q. Sun, P. Hassanzadeh, M. J. Alexander, and C. G. Kruse, “Quantifying 3d gravity wave drag in a library of tropical convection-permitting simulations for data-driven parameterizations,” Journal of Advances in Modeling Earth Systems, vol. 15, no. 5, p. e2022MS003585, 2023.
  139. M. Satoh, B. Stevens, F. Judt, M. Khairoutdinov, S.-J. Lin, W. M. Putman, and P. Düben, “Global cloud-resolving models,” Current Climate Change Reports, vol. 5, pp. 172–184, 2019.
  140. C. Irrgang, N. Boers, M. Sonnewald, E. A. Barnes, C. Kadow, J. Staneva, and J. Saynisch‐Wagner, “Towards neural earth system modelling by integrating artificial intelligence in earth system science,” Nature Machine Intelligence, vol. 3, pp. 667 – 674, 2021.
  141. M. Sonnewald, R. Lguensat, D. C. Jones, P. D. Dueben, J. Brajard, and V. Balaji, “Bridging observations, theory and numerical simulation of the ocean using machine learning,” Environmental Research Letters, vol. 16, p. 073008, jul 2021.
  142. P. Bommer, M. Kretschmer, A. Hedström, D. Bareeva, and M. M. C. Höhne, “Finding the right xai method – a guide for the evaluation and ranking of explainable ai methods in climate science,” 2024.
  143. M. Flora, C. Potvin, A. Mcgovern, and S. Handler, “A machine learning explainability tutorial for atmospheric sciences,” Artificial Intelligence for the Earth Systems, vol. 3, 11 2023.
  144. A. Mamalakis, E. A. Barnes, and I. Ebert-Uphoff, “Investigating the fidelity of explainable artificial intelligence methods for applications of convolutional neural networks in geoscience,” Artificial Intelligence for the Earth Systems.
  145. K. J. Mayer and E. A. Barnes, “Subseasonal forecasts of opportunity identified by an explainable neural network,” Geophysical Research Letters, vol. 48, no. 10, p. e2020GL092092, 2021.
  146. B. A. Toms, E. A. Barnes, and I. Ebert-Uphoff, “Physically interpretable neural networks for the geosciences: Applications to earth system variability,” Journal of Advances in Modeling Earth Systems, vol. 12, no. 9, p. e2019MS002002, 2020.
  147. M. Farge, “Wavelet transforms and their applications to turbulence,” Annual review of fluid mechanics, vol. 24, no. 1, pp. 395–458, 1992.
  148. S. Mallat, “Understanding deep convolutional networks,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065, p. 20150203, 2016.
  149. B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature, vol. 381, no. 6583, pp. 607–609, 1996.
  150. V. Balaji, “Climbing down charney’s ladder: machine learning and the post-dennard era of computational climate science,” Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, p. 20200085, 2021.
Citations (8)

Summary

  • The paper introduces ML techniques to reveal underlying climate physics from vast observational and simulated datasets.
  • It applies ML for model discovery and parameter estimation using methods like physics-informed neural networks and ensemble Kalman inversion.
  • The study showcases ML-enhanced climate emulators and improved subgrid-scale parameterizations, addressing challenges in uncertainty quantification.

Machine Learning for Climate Physics and Simulations

The paper "Machine Learning for Climate Physics and Simulations" by Lai et al. provides a comprehensive examination of the integration of ML methodologies into the field of climate science, specifically focusing on climate physics and simulation. As the discourse on the applicability of ML in various scientific domains escalates, this paper articulates a structured narrative on how these techniques are revolutionizing understanding and prediction in climate science.

The authors delineate the use of ML in two principal areas: ML for climate physics and ML for climate simulations. This bifurcation is critical in understanding the diverse utility of ML methodologies, from aiding in the discovery of underlying physics to enhancing predictive models for future climate scenarios.

ML for Climate Physics

In the domain of climate physics, the paper highlights the deployment of ML algorithms for extracting physical insights from vast datasets generated by both observations and high-fidelity simulations. Here, the authors introduce the concept of "data-informed knowledge discovery" which involves the use of ML to identify patterns and coherent structures in high-dimensional climate data. Techniques such as supervised learning and unsupervised learning, including neural networks (NNs) and clustering algorithms, are employed for this purpose. The authors also discuss the application of autoencoders for nonlinear dimensionality reduction, demonstrating an advanced understanding of atmospheric phenomena like the El Niño Southern Oscillation.

Further, the paper explores "data-informed model discovery," using ML to infer predictive models. By integrating methodologies for parametric estimation, state estimation, and structural estimation, the authors underscore the transformation of ML methods into tools for discovering closed-form physical equations from climate data. Examples discussed include the use of ensemble Kalman inversion (EKI) for parametric estimation and physics-informed neural networks (PINNs) for state estimation.

ML for Climate Simulations

Transitioning to climate simulations, ML is utilized in two primary ways: enhancing subgrid-scale (SGS) parameterization and developing climate emulators. For SGS parameterization, the authors explore how ML-driven models can capture the effects of unresolved small-scale processes on larger-scale climate predictions. The paper elaborates on the challenges of integrating ML-based SGS parameterizations into climate models, citing issues such as model stability and interpretability.

In terms of climate emulation, the paper presents ML-based emulators that can reproduce Earth system dynamics at a fraction of the computational cost associated with traditional methods. Emulators are trained on data from physics-based models or observations to rapidly generate predictions necessary for long climate simulations.

Challenges and Opportunities

The paper rightly points out the significant challenges still faced in this integration. These include quantifying uncertainties inherent in ML models, with a particular focus on epistemic uncertainties and spectral bias in deep learning methods. Such uncertainties can severely impact the reliability of ML models in predicting non-stationary climate phenomena where historical data does not represent possible future conditions.

Moreover, the authors address the critical issue of generalization in ML models, especially in predicting climate responses under novel scenarios not represented in training datasets. In addressing these challenges, the paper advocates for the incorporation of physical constraints into ML models (referenced as physics-informed ML) to bolster their extrapolative reliability.

Conclusion

Lai et al.'s paper stands as a valuable resource for researchers looking to understand or contribute to the burgeoning field of ML applications in climate science. By carefully elaborating on both theoretical advancements and practical implementations, it charts a comprehensive agenda for future research, emphasizing cross-disciplinary collaboration. This work will undoubtedly catalyze further inquiry and development in deploying ML for more robust climate modeling and discovery. Notably, this contribution speaks to the balancing act between data-driven approaches and the inherent complexity of climate systems, reminding researchers of potential biases and the limits of current models in preparing for future uncertainties.