Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Bayesian Image-on-Scalar Regression for Population-Scale Neuroimaging Data Analysis (2404.13204v2)

Published 19 Apr 2024 in stat.AP and stat.CO

Abstract: Bayesian Image-on-Scalar Regression (ISR) offers significant advantages for neuroimaging data analysis, including flexibility and the ability to quantify uncertainty. However, its application to large-scale imaging datasets, such as found in the UK Biobank, is hindered by the computational demands of traditional posterior computation methods, as well as the challenge of individual-specific brain masks that deviate from the common mask typically used in standard ISR approaches. To address these challenges, we introduce a novel Bayesian ISR model that is scalable and accommodates inconsistent brain masks across subjects in large-scale imaging studies. Our model leverages Gaussian process priors and integrates salience area indicators to facilitate ISR. We develop a cutting-edge scalable posterior computation algorithm that employs stochastic gradient Langevin dynamics coupled with memory mapping techniques, ensuring that computation time scales linearly with subsample size and memory usage is constrained only by the batch size. Our approach uniquely enables direct spatial posterior inferences on brain activation regions. The efficacy of our method is demonstrated through simulations and analysis of the UK Biobank task fMRI data, encompassing 38,639 subjects and over 120,000 voxels per image, showing that it can achieve a speed increase of 4 to 11 times and enhance statistical power by 8% to 18% compared to traditional Gibbs sampling with zero-imputation in various simulation scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Benjamini, Y. and Hochberg, Y. (1995), “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal statistical society: series B (Methodological), 57, 289–300.
  2. Blaiotta, C., Cardoso, M. J., and Ashburner, J. (2016), “Variational inference for medical image segmentation,” Computer Vision and Image Understanding, 151, 14–28.
  3. Casey, B., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., et al. (2018), “The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites,” Developmental cognitive neuroscience, 32, 43–54.
  4. Chen, G., Saad, Z. S., Britton, J. C., Pine, D. S., and Cox, R. W. (2013), “Linear mixed-effects modeling approach to FMRI group analysis,” Neuroimage, 73, 176–190.
  5. Chen, G., Saad, Z. S., Nath, A. R., Beauchamp, M. S., and Cox, R. W. (2012), “FMRI group analysis combining effect estimates and their variances,” Neuroimage, 60, 747–765.
  6. Cole, J. H. (2020), “Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors,” Neurobiology of aging, 92, 34–42.
  7. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., and Killiany, R. J. (2006), “An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest,” Neuroimage, 31, 968–980.
  8. Eddelbuettel, D. and François, R. (2011), “Rcpp: Seamless R and C++ Integration,” Journal of Statistical Software, 40, 1–18.
  9. Eddelbuettel, D. and Sanderson, C. (2014), “RcppArmadillo: Accelerating R with high-performance C++ linear algebra,” Computational Statistics and Data Analysis, 71, 1054–1063.
  10. Elliott, L. T., Sharp, K., Alfaro-Almagro, F., Shi, S., Miller, K. L., Douaud, G., Marchini, J., and Smith, S. M. (2018), “Genome-wide association studies of brain imaging phenotypes in UK Biobank,” Nature, 562, 210–216.
  11. Foundas, A. L., Leonard, C. M., Gilmore, R. L., Fennell, E. B., and Heilman, K. M. (1996), “Pars triangularis asymmetry and language dominance.” Proceedings of the National Academy of Sciences, 93, 719–722.
  12. Groppe, D. M., Urbach, T. P., and Kutas, M. (2011), “Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review,” Psychophysiology, 48, 1711–1725.
  13. Hammers, A., Asselin, M.-C., Hinz, R., Kitchen, I., Brooks, D. J., Duncan, J. S., and Koepp, M. J. (2007), “Upregulation of opioid receptor binding following spontaneous epileptic seizures,” Brain, 130, 1009–1016.
  14. Hariri, A. R., Tessitore, A., Mattay, V. S., Fera, F., and Weinberger, D. R. (2002), “The amygdala response to emotional stimuli: a comparison of faces and scenes,” Neuroimage, 17, 317–323.
  15. Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013), “Stochastic variational inference,” Journal of Machine Learning Research.
  16. Holmes, C. J., Hoge, R., Collins, L., Woods, R., Toga, A. W., and Evans, A. C. (1998), “Enhancement of MR images using registration for signal averaging,” Journal of computer assisted tomography, 22, 324–333.
  17. Jaakkola, T. S. and Jordan, M. I. (1999), “Variational probabilistic inference and the QMR-DT network,” Journal of artificial intelligence research, 10, 291–322.
  18. Kaden, E., Anwander, A., and Knösche, T. R. (2008), “Variational inference of the fiber orientation density using diffusion MR imaging,” Neuroimage, 42, 1366–1380.
  19. Kane, M. J., Emerson, J., and Weston, S. (2013), “Scalable Strategies for Computing with Massive Data,” Journal of Statistical Software, 55, 1–19.
  20. Kim, S., Song, Q., and Liang, F. (2022), “Stochastic gradient Langevin dynamics with adaptive drifts,” Journal of statistical computation and simulation, 92, 318–336.
  21. Kulkarni, P. H., Merchant, S., and Awate, S. P. (2022), “Mixed-dictionary models and variational inference in task fMRI for shorter scans and better image quality,” Medical Image Analysis, 78, 102392.
  22. Leming, M. and Suckling, J. (2021), “Deep learning for sex classification in resting-state and task functional brain networks from the UK Biobank,” NeuroImage, 241, 118409.
  23. Li, X., Wang, L., Wang, H. J., and Initiative, A. D. N. (2021), “Sparse learning and structure identification for ultrahigh-dimensional image-on-scalar regression,” Journal of the American Statistical Association, 116, 1994–2008.
  24. Lindquist, M. A. (2008), “The Statistical Analysis of fMRI Data,” SSO Schweiz. Monatsschr. Zahnheilkd., 23, 439–464.
  25. Littlejohns, T. J., Holliday, J., Gibson, L. M., Garratt, S., Oesingmann, N., Alfaro-Almagro, F., Bell, J. D., Boultwood, C., Collins, R., Conroy, M. C., et al. (2020), “The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions,” Nature communications, 11, 2624.
  26. Maullin-Sapey, T. and Nichols, T. E. (2022), “BLMM: Parallelised computing for big linear mixed models,” NeuroImage, 264, 119729.
  27. Meyer, M. J., Coull, B. A., Versace, F., Cinciripini, P., and Morris, J. S. (2015), “Bayesian function-on-function regression for multilevel functional data,” Biometrics, 71, 563–574.
  28. Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., Bartsch, A. J., Jbabdi, S., Sotiropoulos, S. N., Andersson, J. L., et al. (2016), “Multimodal population brain imaging in the UK Biobank prospective epidemiological study,” Nature neuroscience, 19, 1523–1536.
  29. Morris, J. S. (2015), “Functional regression,” Annual Review of Statistics and Its Application, 2, 321–359.
  30. Mulugeta, G., Eckert, M. A., Vaden, K. I., Johnson, T. D., and Lawson, A. B. (2017), “Methods for the analysis of missing data in FMRI studies,” Journal of biometrics & biostatistics, 8.
  31. Onitsuka, T., Shenton, M. E., Salisbury, D. F., Dickey, C. C., Kasai, K., Toner, S. K., Frumin, M., Kikinis, R., Jolesz, F. A., and McCarley, R. W. (2004), “Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study,” American Journal of Psychiatry, 161, 1603–1611.
  32. Ranganath, R., Gerrish, S., and Blei, D. (2014), “Black Box Variational Inference,” in Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, eds. Kaski, S. and Corander, J., Reykjavik, Iceland: PMLR, vol. 33 of Proceedings of Machine Learning Research, pp. 814–822.
  33. Reiss, P. T., Huang, L., and Mennes, M. (2010), “Fast function-on-scalar regression with penalized basis expansions,” The international journal of biostatistics, 6.
  34. Rorden, C. and Brett, M. (2000), “Stereotaxic display of brain lesions,” Behavioural neurology, 12, 191–200.
  35. Shen, X., Cox, S. R., Adams, M. J., Howard, D. M., Lawrie, S. M., Ritchie, S. J., Bastin, M. E., Deary, I. J., McIntosh, A. M., and Whalley, H. C. (2018), “Resting-state connectivity and its association with cognitive performance, educational attainment, and household income in the UK Biobank,” Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 878–886.
  36. Smith, S. M. and Nichols, T. E. (2018), “Statistical challenges in “big data” human neuroimaging,” Neuron, 97, 263–268.
  37. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., et al. (2015), “UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age,” PLoS medicine, 12, e1001779.
  38. Szaflarski, J. P., Altaye, M., Rajagopal, A., Eaton, K., Meng, X., Plante, E., and Holland, S. K. (2012), “A 10-year longitudinal fMRI study of narrative comprehension in children and adolescents,” Neuroimage, 63, 1188–1195.
  39. Szaflarski, J. P., Schmithorst, V. J., Altaye, M., Byars, A. W., Ret, J., Plante, E., and Holland, S. K. (2006), “A longitudinal functional magnetic resonance imaging study of language development in children 5 to 11 years old,” Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 59, 796–807.
  40. Vaden Jr, K. I., Gebregziabher, M., Kuchinsky, S. E., and Eckert, M. A. (2012), “Multiple imputation of missing fMRI data in whole brain analysis,” Neuroimage, 60, 1843–1855.
  41. Weiner, K. S. and Zilles, K. (2016), “The anatomical and functional specialization of the fusiform gyrus,” Neuropsychologia, 83, 48–62.
  42. Welling, M. and Teh, Y. W. (2011), “Bayesian learning via stochastic gradient Langevin dynamics,” in Proceedings of the 28th international conference on machine learning (ICML-11), Citeseer, pp. 681–688.
  43. Wu, T.-Y., Rachel Wang, Y., and Wong, W. H. (2022), “Mini-batch metropolis–hastings with reversible SGLD proposal,” Journal of the American Statistical Association, 117, 386–394.
  44. Yu, S., Wang, G., Wang, L., and Yang, L. (2021), “Multivariate spline estimation and inference for image-on-scalar regression,” Statistica Sinica, 31, 1463–1487.
  45. Zeng, Z., Li, M., and Vannucci, M. (2022), “Bayesian Image-on-Scalar Regression with a Spatial Global-Local Spike-and-Slab Prior,” Bayesian Analysis, 1, 1–26.
  46. Zhang, D., Li, L., Sripada, C., and Kang, J. (2023), “Image response regression via deep neural networks,” Journal of the Royal Statistical Society Series B: Statistical Methodology, qkad073.
  47. Zhang, Z., Wang, X., Kong, L., and Zhu, H. (2022), “High-dimensional spatial quantile function-on-scalar regression,” Journal of the American Statistical Association, 117, 1563–1578.
  48. Zhu, H., Fan, J., and Kong, L. (2014), “Spatially varying coefficient model for neuroimaging data with jump discontinuities,” Journal of the American Statistical Association, 109, 1084–1098.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com