Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Quantum Tabu Search for Solving the Vehicle Routing Problem (2404.13203v1)

Published 19 Apr 2024 in cs.ET

Abstract: There has never been a more exciting time for the future of quantum computing than now. Near-term quantum computing usage is now the next XPRIZE. With that challenge in mind we have explored a new approach as a hybrid quantum-classical algorithm for solving NP-Hard optimization problems. We have focused on the classic problem of the Capacitated Vehicle Routing Problem (CVRP) because of its real-world industry applications. Heuristics are often employed to solve this problem because it is difficult. In addition, meta-heuristic algorithms have proven to be capable of finding reasonable solutions to optimization problems like the CVRP. Recent research has shown that quantum-only and hybrid quantum/classical approaches to solving the CVRP are possible. Where quantum approaches are usually limited to minimal optimization problems, hybrid approaches have been able to solve more significant problems. Still, the hybrid approaches often need help finding solutions as good as their classical counterparts. In our proposed approach, we created a hybrid quantum/classical metaheuristic algorithm capable of finding the best-known solution to a classic CVRP problem. Our experimental results show that our proposed algorithm often outperforms other hybrid approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale traveling-salesman problem,” Journal of the operations research society of America, vol. 2, no. 4, pp. 393–410, 1954.
  2. B. Eksioglu, A. V. Vural, and A. Reisman, “The vehicle routing problem: A taxonomic review,” Computers & Industrial Engineering, vol. 57, no. 4, pp. 1472–1483, 2009.
  3. G. Clarke and J. W. Wright, “Scheduling of vehicles from a central depot to a number of delivery points,” Operations research, vol. 12, no. 4, pp. 568–581, 1964.
  4. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” nature, vol. 464, no. 7285, pp. 45–53, 2010.
  5. G. Laporte, P. Toth, and D. Vigo, “Vehicle routing: historical perspective and recent contributions,” EURO Journal on Transportation and Logistics, vol. 2, pp. 1–4, 2013.
  6. H. Irie, G. Wongpaisarnsin, M. Terabe, A. Miki, and S. Taguchi, “Quantum annealing of vehicle routing problem with time, state and capacity,” in Quantum Technology and Optimization Problems: First International Workshop, QTOP 2019, Munich, Germany, March 18, 2019, Proceedings 1.   Springer, 2019, pp. 145–156.
  7. S. Feld, C. Roch, T. Gabor, C. Seidel, F. Neukart, I. Galter, W. Mauerer, and C. Linnhoff-Popien, “A hybrid solution method for the capacitated vehicle routing problem using a quantum annealer,” Frontiers in ICT, vol. 6, p. 13, 2019.
  8. E. Osaba, E. Villar-Rodriguez, and I. Oregi, “A systematic literature review of quantum computing for routing problems,” IEEE Access, vol. 10, pp. 55 805–55 817, 2022.
  9. D.-W. S. Inc, “What is quantum annealing?” 2024, accessed on February 02 2024. [Online]. Available: https://docs.dwavesys.com/481 docs/latest/c_gs_2.html
  10. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum computation by adiabatic evolution,” arXiv preprint quant-ph/0001106, 2000.
  11. S. Harwood, C. Gambella, D. Trenev, A. Simonetto, D. Bernal, and D. Greenberg, “Formulating and solving routing problems on quantum computers,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–17, 2021.
  12. D. Fitzek, T. Ghandriz, L. Laine, M. Granath, and A. F. Kockum, “Applying quantum approximate optimization to the heterogeneous vehicle routing problem,” arXiv preprint arXiv:2110.06799, 2021.
  13. S. Matsubara, M. Takatsu, T. Miyazawa, T. Shibasaki, Y. Watanabe, K. Takemoto, and H. Tamura, “Digital annealer for high-speed solving of combinatorial optimization problems and its applications,” in 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC).   IEEE, 2020, pp. 667–672.
  14. R. Harikrishnakumar, S. Nannapaneni, N. H. Nguyen, J. E. Steck, and E. C. Behrman, “A quantum annealing approach for dynamic multi-depot capacitated vehicle routing problem,” arXiv preprint arXiv:2005.12478, 2020.
  15. S. Yarkoni, A. Huck, H. Schülldorf, B. Speitkamp, M. S. Tabrizi, M. Leib, T. Bäck, and F. Neukart, “Solving the shipment rerouting problem with quantum optimization techniques,” in Computational Logistics: 12th International Conference, ICCL 2021, Enschede, The Netherlands, September 27–29, 2021, Proceedings 12.   Springer, 2021, pp. 502–517.
  16. S. Bao, M. Tawada, S. Tanaka, and N. Togawa, “An approach to the vehicle routing problem with balanced pick-up using ising machines,” in 2021 International Symposium on VLSI Design, Automation and Test (VLSI-DAT).   IEEE, 2021, pp. 1–4.
  17. ——, “An ising-machine-based solver of vehicle routing problem with balanced pick-up,” IEEE Transactions on Consumer Electronics, 2023.
  18. A. Ajagekar, T. Humble, and F. You, “Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems,” Computers & Chemical Engineering, vol. 132, p. 106630, 2020.
  19. A. Lucas, “Ising formulations of many np problems,” Frontiers in physics, vol. 2, p. 74887, 2014.
  20. M. Borowski, P. Gora, K. Karnas, M. Błajda, K. Król, A. Matyjasek, D. Burczyk, M. Szewczyk, and M. Kutwin, “New hybrid quantum annealing algorithms for solving vehicle routing problem,” in International Conference on Computational Science.   Springer, 2020, pp. 546–561.
  21. N. Christofides, A. Mingozzi, and P. Toth, “Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations,” Mathematical programming, vol. 20, pp. 255–282, 1981.
  22. B. E. Gillett and L. R. Miller, “A heuristic algorithm for the vehicle-dispatch problem,” Operations research, vol. 22, no. 2, pp. 340–349, 1974.
  23. M. L. Fisher and R. Jaikumar, “A generalized assignment heuristic for vehicle routing,” Networks, vol. 11, no. 2, pp. 109–124, 1981.
  24. J.-F. Cordeau, M. Gendreau, G. Laporte, J.-Y. Potvin, and F. Semet, “A guide to vehicle routing heuristics,” Journal of the Operational Research society, vol. 53, pp. 512–522, 2002.
  25. E. Osaba, E. Villar-Rodriguez, I. Oregi, and A. Moreno-Fernandez-de Leceta, “Hybrid quantum computing-tabu search algorithm for partitioning problems: preliminary study on the traveling salesman problem,” in 2021 IEEE Congress on Evolutionary Computation (CEC).   IEEE, 2021, pp. 351–358.
  26. F. Glover, “Tabu search—part i,” ORSA Journal on computing, vol. 1, no. 3, pp. 190–206, 1989.
  27. ——, “Tabu search—part ii,” ORSA Journal on computing, vol. 2, no. 1, pp. 4–32, 1990.
  28. I. H. Osman, “Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem,” Annals of operations research, vol. 41, pp. 421–451, 1993.
  29. É. Taillard, “Parallel iterative search methods for vehicle routing problems,” Networks, vol. 23, no. 8, pp. 661–673, 1993.
  30. M. Gendreau, A. Hertz, and G. Laporte, “A tabu search heuristic for the vehicle routing problem,” Management science, vol. 40, no. 10, pp. 1276–1290, 1994.
  31. ——, “New insertion and postoptimization procedures for the traveling salesman problem,” Operations Research, vol. 40, no. 6, pp. 1086–1094, 1992.
  32. F. Glover and J.-K. Hao, “The case for strategic oscillation,” Annals of Operations Research, vol. 183, pp. 163–173, 2011.
  33. D.-W. S. Inc, “An approach to solve the vehicle routing problem (vrp) using quantum computing,” 2023, accessed on January 15 2024. [Online]. Available: https://github.com/dwave-examples/D-Wave-VRP
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. James Holliday (1 paper)
  2. Braeden Morgan (1 paper)
  3. Hugh Churchill (14 papers)
  4. Khoa Luu (89 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com