Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivariant Algebraic K-Theory and Derived completions III: Applications (2404.13199v2)

Published 19 Apr 2024 in math.AG and math.KT

Abstract: In the present paper, we discuss applications of the derived completion theorems proven in our previous two papers. One of the main applications is to Riemann-Roch problems for forms of higher equivariant K-theory, which we are able to establish in great generality both for equivariant G-theory and equivariant homotopy K-theory with respect to actions of linear algebraic groups on normal quasi-projective schemes over a given field. We show such Riemann-Roch theorems apply to all toric and spherical varieties. We also obtain Lefschetz-Riemann-Roch theorems involving the fixed point schemes with respect to actions of diagonalizable group schemes. We also show the existence of certain spectral sequences that compute the homotopy groups of the derived completions of equivariant G-theory starting with equivariant Borel-Moore motivic cohomology.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com