Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the rectilinear crossing number of complete balanced multipartite graphs and layered graphs (2404.13155v1)

Published 19 Apr 2024 in math.CO and cs.CG

Abstract: A rectilinear drawing of a graph is a drawing of the graph in the plane in which the edges are drawn as straight-line segments. The rectilinear crossing number of a graph is the minimum number of pairs of edges that cross over all rectilinear drawings of the graph. Let $n \ge r$ be positive integers. The graph $K_nr$, is the complete $r$-partite graph on $n$ vertices, in which every set of the partition has at least $\lfloor n/r \rfloor$ vertices. The layered graph, $L_nr$, is an $r$-partite graph on $n$ vertices, in which for every $1\le i \le r-1$, all the vertices in the $i$-th partition are adjacent to all the vertices in the $(i+1)$-th partition. In this paper, we give upper bounds on the rectilinear crossing numbers of $K_nr$ and~$L_nr$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. R. Fabila-Monroy, R. Paul, J. Viafara-Chanchi, and A. Weinberger, “On the rectilinear crossing number of complete balanced multipartite graphs and layered graphs,” in XX Encuentros de Geometrıa Computacional (EGC’23), Santiago de Compostela, Spain, pp. 33–36, 2023.
  2. M. Schaefer, Crossing numbers of graphs. CRC Press, 2018.
  3. F. Harary and A. Hill, “On the number of crossings in a complete graph,” Proceedings of the Edinburgh Mathematical Society, vol. 13, no. 4, pp. 333–338, 1963.
  4. R. K. Guy, “A combinatorial problem,” Nabla (Bulletin of the Malayan Mathematical Society), vol. 7, pp. 68–72, 1960.
  5. K. Zarankiewicz, “On a problem of P. Turan concerning graphs,” Fund. Math., vol. 41, pp. 137–145, 1954.
  6. B. M. Ábrego, S. Fernández-Merchant, J. Leaños, and G. Salazar, “A central approach to bound the number of crossings in a generalized configuration,” in The IV Latin-American Algorithms, Graphs, and Optimization Symposium, vol. 30 of Electron. Notes Discrete Math., pp. 273–278, Elsevier Sci. B. V., Amsterdam, 2008.
  7. O. Aichholzer, F. Duque, R. Fabila Monroy, O. E. García-Quintero, and C. Hidalgo-Toscano, “An ongoing project to improve the rectilinear and the pseudolinear crossing constants.” Preprint.
  8. H. Harborth, “Über die Kreuzungszahl vollständiger, n-geteilter Graphen,” Mathematische Nachrichten, vol. 48, no. 1-6, pp. 179–188, 1971.
  9. E. Gethner, L. Hogben, B. Lidickỳ, F. Pfender, A. Ruiz, and M. Young, “On crossing numbers of complete tripartite and balanced complete multipartite graphs,” Journal of Graph Theory, vol. 4, no. 84, pp. 552–565, 2017.
  10. J. W. Moon, “On the distribution of crossings in random complete graphs,” J. Soc. Indust. Appl. Math., vol. 13, pp. 506–510, 1965.
  11. O. Aichholzer, F. Aurenhammer, and H. Krasser, “Enumerating order types for small point sets with applications,” Order, vol. 19, no. 3, pp. 265–281, 2002.
  12. B. M. Ábrego and S. Fernández-Merchant, “Geometric drawings of Knsubscript𝐾𝑛K_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT with few crossings,” J. Combin. Theory Ser. A, vol. 114, no. 2, pp. 373–379, 2007.
  13. R. Fabila-Monroy and J. López, “Computational search of small point sets with small rectilinear crossing number,” Journal of Graph Algorithms and Applications, vol. 18, no. 3, pp. 393–399, 2014.
  14. F. Duque, R. Fabila-Monroy, C. Hernández-Vélez, and C. Hidalgo-Toscano, “Counting the number of crossings in geometric graphs,” Inform. Process. Lett., vol. 165, pp. Paper No. 106028, 5, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.