Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Search for a resonance decaying into a scalar particle and a Higgs boson in the final state with two bottom quarks and two photons in proton-proton collisions at a center of mass energy of 13 TeV with the ATLAS detector (2404.12915v2)

Published 19 Apr 2024 in hep-ex

Abstract: A search for the resonant production of a heavy scalar $X$ decaying into a Higgs boson and a new lighter scalar $S$, through the process $X \to S(\to bb) H(\to \gamma\gamma)$, where the two photons are consistent with the Higgs boson decay, is performed. The search is conducted using an integrated luminosity of 140 fb${-1}$ of proton-proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed over the mass range 170 $\leq$ $m_{X}$ $\leq$ 1000 GeV and 15 $\leq$ $m_{S}$ $\leq$ 500 GeV. Parameterised neural networks are used to enhance the signal purity and to achieve continuous sensitivity in a domain of the ($m_{X}$, $m_{S}$) plane. No significant excess above the expected background is found and 95% CL upper limits are set on the cross section times branching ratio, ranging from 39 fb to 0.09 fb. The largest deviation from the background-only expectation occurs for ($m_{X}$, $m_{S}$) = (575, 200) GeV with a local (global) significance of 3.5 (2.0) standard deviations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (104)
  1. ATLAS Collaboration “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC” In Phys. Lett. B 716, 2012, pp. 1 DOI: 10.1016/j.physletb.2012.08.020
  2. CMS Collaboration “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC” In Phys. Lett. B 716, 2012, pp. 30 DOI: 10.1016/j.physletb.2012.08.021
  3. CMS Collaboration “A portrait of the Higgs boson by the CMS experiment ten years after the discovery” In Nature 607, 2022, pp. 60–68 DOI: 10.1038/s41586-022-04892-x
  4. ATLAS Collaboration “A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery” In Nature 607, 2022, pp. 52–59 DOI: 10.1038/s41586-022-04893-w
  5. “Exploration of Extended Higgs Sectors with Run-2 Proton–Proton Collision Data at the LHC” In Symmetry 13.11, 2021, pp. 2144 DOI: 10.3390/sym14081546
  6. “Complex singlet extension of the standard model” In Phys. Rev. D 79 American Physical Society, 2009, pp. 015018 DOI: 10.1103/PhysRevD.79.015018
  7. Tania Robens, Tim Stefaniak and Jonas Wittbrodt “Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios” In Eur. Phys. J. C 80.2, 2020, pp. 151 DOI: https://doi.org/10.1140/epjc/s10052-020-7655-x
  8. Ilya F. Ginzburg, Maria Krawczyk and Per Osland “Two-Higgs-Doublet Models with CP violation”, 2002 arXiv:hep-ph/0211371 [hep-ph]
  9. “Constraints on scalar dark matter from direct experimental searches” In Phys. Rev. D 79, 2009, pp. 023521 DOI: 10.1103/PhysRevD.79.023521
  10. “The N2HDM under theoretical and experimental scrutiny” In JHEP 03, 2017, pp. 94 DOI: 10.1007/JHEP03(2017)094
  11. Ulrich Ellwanger, Cyril Hugonie and Ana M. Teixeira “The Next-to-Minimal Supersymmetric Standard Model” In Phys. Rept. 496.1, 2010, pp. 1–77 DOI: https://doi.org/10.1016/j.physrep.2010.07.001
  12. Markos Maniatis “The next-to-minimal supersymmetric extension of the standard model reviewed” In Int. J. Mod. Phys. A 25.3505, 2010 DOI: https://doi:10.1142/S0217751X10049827
  13. “Showcasing H⁢H𝐻𝐻HHitalic_H italic_H production: Benchmarks for the LHC and HL-LHC” In Phys. Rev. D 99 American Physical Society, 2019, pp. 055048 DOI: 10.1103/PhysRevD.99.055048
  14. Sebastian Baum and Nausheen R Shah “Benchmark Suggestions for Resonant Double Higgs Production at the LHC for Extended Higgs Sectors”, 2019 arXiv:1904.10810 [hep-ph]
  15. CMS Collaboration “Search for a massive scalar resonance decaying to a light scalar and a Higgs boson in the four b𝑏bitalic_b quarks final state with boosted topology” In Phys. Lett. B 842, 2023, pp. 137392 DOI: 10.1016/j.physletb.2022.137392
  16. CMS Collaboration “Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the τ⁢τ𝜏𝜏\tau\tauitalic_τ italic_τbb final state at 13 TeV” In JHEP 11, 2021, pp. 57 DOI: 10.1007/JHEP11(2021)057
  17. CMS Collaboration “Search for a new resonance decaying into two spin-0 bosons in a final state with two photons and two bottom quarks in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, 2023 arXiv:2310.01643 [hep-ex]
  18. ATLAS Collaboration “Search for a new heavy scalar particle decaying into a Higgs boson and a new scalar singlet in final states with one or two light leptons and a pair of \uptau\uptau\uptau-leptons with the ATLAS detector” In JHEP 10, 2023, pp. 009 DOI: https://doi.org/10.1007/JHEP10(2023)009
  19. ATLAS Collaboration “Search for Higgs boson pair production in the two bottom quarks plus two photons final state in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Rev. D 106, 2022, pp. 052001 DOI: 10.1103/PhysRevD.106.052001
  20. ATLAS Collaboration “The ATLAS Experiment at the CERN Large Hadron Collider” In JINST 3, 2008, pp. S08003 DOI: 10.1088/1748-0221/3/08/S08003
  21. ATLAS Collaboration “ATLAS Insertable B-Layer: Technical Design Report”, 2010 URL: https://cds.cern.ch/record/1291633
  22. B. Abbott “Production and integration of the ATLAS Insertable B-Layer” In JINST 13, 2018, pp. T05008 DOI: 10.1088/1748-0221/13/05/T05008
  23. G. Avoni “The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS” In JINST 13.07, 2018, pp. P07017 DOI: 10.1088/1748-0221/13/07/P07017
  24. ATLAS Collaboration “Performance of the ATLAS trigger system in 2015” In Eur. Phys. J. C 77, 2017, pp. 317 DOI: 10.1140/epjc/s10052-017-4852-3
  25. ATLAS Collaboration “The ATLAS Collaboration Software and Firmware”, ATL-SOFT-PUB-2021-001, 2021 URL: https://cds.cern.ch/record/2767187
  26. ATLAS Collaboration “ATLAS data quality operations and performance for 2015–2018 data-taking” In JINST 15, 2020, pp. P04003 DOI: 10.1088/1748-0221/15/04/P04003
  27. “Luminosity determination in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG=13 TeV using the ATLAS detector at the LHC” In Eur. Phys. J. C 83.982, 2023 DOI: 10.1140/epjc/s10052-023-11747-w
  28. ATLAS Collaboration “Performance of electron and photon triggers in ATLAS during LHC Run 2” In Eur. Phys. J. C 80, 2020, pp. 47 DOI: 10.1140/epjc/s10052-019-7500-2
  29. ATLAS Collaboration “Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data” In JINST 14, 2019, pp. P12006 DOI: 10.1088/1748-0221/14/12/P12006
  30. “An introduction to PYTHIA 8.2” In Comput. Phys. Commun. 191, 2015, pp. 159 DOI: 10.1016/j.cpc.2015.01.024
  31. NNPDF Collaboration and Richard D. Ball “Parton distributions with LHC data” In Nucl. Phys. B 867, 2013, pp. 244 DOI: 10.1016/j.nuclphysb.2012.10.003
  32. ATLAS Collaboration “ATLAS Pythia 8 tunes to 7⁢TeV7TeV7\leavevmode\nobreak\ \text{TeV}7 TeV data”, ATL-PHYS-PUB-2014-021, 2014 URL: https://cds.cern.ch/record/1966419
  33. Enrico Bothmann “Event generation with Sherpa 2.2” In SciPost Phys. 7.3, 2019, pp. 034 DOI: 10.21468/SciPostPhys.7.3.034
  34. NNPDF Collaboration and Richard D. Ball “Parton distributions for the LHC run II” In JHEP 04, 2015, pp. 040 DOI: 10.1007/JHEP04(2015)040
  35. “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations” In JHEP 07, 2014, pp. 079 DOI: 10.1007/JHEP07(2014)079
  36. Keith Hamilton, Paolo Nason and Giulia Zanderighi “MINLO: multi-scale improved NLO” In JHEP 10, 2012, pp. 155 DOI: 10.1007/JHEP10(2012)155
  37. “NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM” In JHEP 07, 2012, pp. 092 DOI: 10.1007/JHEP07(2012)092
  38. “Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching” In JHEP 05, 2013, pp. 082 DOI: 10.1007/JHEP05(2013)082
  39. “Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC” In Nucl. Phys. B 737, 2006, pp. 73–120 DOI: 10.1016/j.nuclphysb.2005.12.022
  40. “Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC” In JHEP 11, 2011, pp. 064 DOI: 10.1007/JHEP11(2011)064
  41. Jon Butterworth “PDF4LHC recommendations for LHC Run II” In J. Phys. G 43, 2016, pp. 023001 DOI: 10.1088/0954-3899/43/2/023001
  42. ATLAS Collaboration “Measurement of the Z/γ*𝑍superscript𝛾Z/\gamma^{*}italic_Z / italic_γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT boson transverse momentum distribution in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector” In JHEP 09, 2014, pp. 145 DOI: 10.1007/JHEP09(2014)145
  43. Paolo Nason “A new method for combining NLO QCD with shower Monte Carlo algorithms” In JHEP 11, 2004, pp. 040 DOI: 10.1088/1126-6708/2004/11/040
  44. Stefano Frixione, Paolo Nason and Carlo Oleari “Matching NLO QCD computations with parton shower simulations: the POWHEG method” In JHEP 11, 2007, pp. 070 DOI: 10.1088/1126-6708/2007/11/070
  45. “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX” In JHEP 06, 2010, pp. 043 DOI: 10.1007/JHEP06(2010)043
  46. “NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG” In JHEP 02, 2010, pp. 037 DOI: 10.1007/JHEP02(2010)037
  47. Ken Mimasu, Veronica Sanz and Ciaran Williams “Higher order QCD predictions for associated Higgs production with anomalous couplings to gauge bosons” In JHEP 08, 2016, pp. 039 DOI: 10.1007/JHEP08(2016)039
  48. “H⁢W±𝐻superscript𝑊plus-or-minusHW^{\pm}italic_H italic_W start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO” In JHEP 10, 2013, pp. 083 DOI: 10.1007/JHEP10(2013)083
  49. “Higgs boson production in association with top quarks in the POWHEG BOX” In Phys. Rev. D 91.9, 2015, pp. 094003 DOI: 10.1103/PhysRevD.91.094003
  50. “NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers” In JHEP 08, 2017, pp. 088 DOI: 10.1007/JHEP08(2017)088
  51. “Probing the trilinear Higgs boson coupling in di-Higgs production at NLO QCD including parton shower effects” In JHEP 06, 2019, pp. 066 DOI: 10.1007/JHEP06(2019)066
  52. “Comix, a new matrix element generator” In JHEP 12, 2008, pp. 039 DOI: 10.1088/1126-6708/2008/12/039
  53. “OpenLoops 2” In Eur. Phys. J. C 79.10, 2019, pp. 866 DOI: 10.1140/epjc/s10052-019-7306-2
  54. Fabio Cascioli, Philipp Maierhöfer and Stefano Pozzorini “Scattering Amplitudes with Open Loops” In Phys. Rev. Lett. 108, 2012, pp. 111601 DOI: 10.1103/PhysRevLett.108.111601
  55. Ansgar Denner, Stefan Dittmaier and Lars Hofer “Collier: A fortran-based complex one-loop library in extended regularizations” In Comput. Phys. Commun. 212, 2017, pp. 220–238 DOI: 10.1016/j.cpc.2016.10.013
  56. D. Florian “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector”, 2017 DOI: 10.23731/CYRM-2017-002
  57. “Higgs boson potential at colliders: Status and perspectives” In Rev. Phys. 5, 2020, pp. 100045 DOI: 10.1016/j.revip.2020.100045
  58. “Threshold resummation effects in Higgs boson pair production at the LHC” In JHEP 07, 2013, pp. 169 DOI: 10.1007/JHEP07(2013)169
  59. “Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC” In JHEP 09, 2015, pp. 053 DOI: 10.1007/JHEP09(2015)053
  60. “g⁢g→H⁢H→𝑔𝑔𝐻𝐻gg\to HHitalic_g italic_g → italic_H italic_H: Combined uncertainties” In Phys. Rev. D 103.5, 2021, pp. 056002 DOI: 10.1103/PhysRevD.103.056002
  61. A. Djouadi, J. Kalinowski and M. Spira “HDECAY: a program for Higgs boson decays in the Standard Model and its supersymmetric extension” In Comput. Phys. Commun. 108, 1998, pp. 56 DOI: 10.1016/S0010-4655(97)00123-9
  62. D.J. Lange “The EvtGen particle decay simulation package” In Proceedings, 7th International Conference on B physics at hadron machines (BEAUTY 2000) 462, 2001, pp. 152 DOI: 10.1016/S0168-9002(01)00089-4
  63. ATLAS Collaboration “The ATLAS Simulation Infrastructure” In Eur. Phys. J. C 70, 2010, pp. 823 DOI: 10.1140/epjc/s10052-010-1429-9
  64. S. Agostinelli “Geant4 – a simulation toolkit” In Nucl. Instrum. Meth. A 506, 2003, pp. 250 DOI: 10.1016/S0168-9002(03)01368-8
  65. ATLAS Collaboration “The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim” ATL-PHYS-PUB-2010-013, 2010 URL: http://cdsweb.cern.ch/record/1300517
  66. T. Sjöstrand, S. Mrenna and P. Skands “A brief introduction to PYTHIA 8.1” In Comput. Phys. Commun. 178, 2008, pp. 852–867 DOI: 10.1016/j.cpc.2008.01.036
  67. ATLAS Collaboration “The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model”, ATL-PHYS-PUB-2016-017, 2016 URL: https://cds.cern.ch/record/2206965
  68. ATLAS Collaboration “Measurement of Higgs boson production in the diphoton decay channel in p⁢p𝑝𝑝ppitalic_p italic_p collisions at center-of-mass energies of 7777 and 8⁢TeV8TeV8\,\text{TeV}8 TeV with the ATLAS detector” In Phys. Rev. D 90, 2014, pp. 112015 DOI: 10.1103/PhysRevD.90.112015
  69. ATLAS Collaboration “Muon reconstruction performance of the ATLAS detector in proton–proton collision data at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 76, 2016, pp. 292 DOI: 10.1140/epjc/s10052-016-4120-y
  70. ATLAS Collaboration “Muon reconstruction and identification efficiency in ATLAS using the full Run 2 p⁢p𝑝𝑝ppitalic_p italic_p collision data set at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 81, 2021, pp. 578 DOI: 10.1140/epjc/s10052-021-09233-2
  71. ATLAS Collaboration “Jet reconstruction and performance using particle flow with the ATLAS Detector” In Eur. Phys. J. C 77, 2017, pp. 466 DOI: 10.1140/epjc/s10052-017-5031-2
  72. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “The anti-ktsubscript𝑘𝑡k_{t}italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT jet clustering algorithm” In JHEP 04, 2008, pp. 063 DOI: 10.1088/1126-6708/2008/04/063
  73. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “FastJet user manual” In Eur. Phys. J. C 72, 2012, pp. 1896 DOI: 10.1140/epjc/s10052-012-1896-2
  74. ATLAS Collaboration “Jet energy scale and resolution measured in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Eur. Phys. J. C 81, 2021, pp. 689 DOI: 10.1140/epjc/s10052-021-09402-3
  75. ATLAS Collaboration “Performance of pile-up mitigation techniques for jets in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV using the ATLAS detector” In Eur. Phys. J. C 76, 2016, pp. 581 DOI: 10.1140/epjc/s10052-016-4395-z
  76. ATLAS Collaboration “ATLAS flavour-tagging algorithms for the LHC Run 2 p⁢p𝑝𝑝ppitalic_p italic_p collision dataset” In Eur. Phys. J. C 83, 2023, pp. 681 DOI: 10.1140/epjc/s10052-023-11699-1
  77. ATLAS Collaboration “Identification of Jets Containing b𝑏bitalic_b-Hadrons with Recurrent Neural Networks at the ATLAS Experiment”, ATL-PHYS-PUB-2017-003, 2017 URL: https://cds.cern.ch/record/2255226
  78. ATLAS Collaboration “ATLAS b𝑏bitalic_b-jet identification performance and efficiency measurement with t⁢t¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG events in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 79, 2019, pp. 970 DOI: 10.1140/epjc/s10052-019-7450-8
  79. ATLAS Collaboration “Measurement of the c𝑐citalic_c-jet mistagging efficiency in t⁢t¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG events using p⁢p𝑝𝑝ppitalic_p italic_p collision data at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV collected with the ATLAS detector” In Eur. Phys. J. C 82, 2022, pp. 95 DOI: 10.1140/epjc/s10052-021-09843-w
  80. ATLAS Collaboration “Calibration of the light-flavour jet mistagging efficiency of the b𝑏bitalic_b-tagging algorithms with Z𝑍Zitalic_Z+jets events using 139⁢fb−1139superscriptfb1139\,\text{fb}^{-1}139 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of ATLAS proton–proton collision data at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 83, 2023, pp. 728 DOI: 10.1140/epjc/s10052-023-11736-z
  81. ATLAS Collaboration “Evidence for the H→b⁢b¯→𝐻𝑏¯𝑏H\rightarrow b\bar{b}italic_H → italic_b over¯ start_ARG italic_b end_ARG decay with the ATLAS detector” In JHEP 12, 2017, pp. 024 DOI: 10.1007/JHEP12(2017)024
  82. ATLAS Collaboration “Search for Higgs boson pair production in the two bottom quarks plus two photons final state in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢  ⁢TeV𝑠13  TeV\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV with the ATLAS detector” In Phys. Rev. D 106 American Physical Society, 2022, pp. 052001 DOI: 10.1103/PhysRevD.106.052001
  83. “Parameterized neural networks for high-energy physics” In Eur. Phys. J. C 76.5 Springer ScienceBusiness Media LLC, 2016, pp. 235 DOI: 10.1140/epjc/s10052-016-4099-4
  84. François Chollet “Keras”, 2015 URL: https://keras.io
  85. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems”, 2015 URL: https://www.tensorflow.org/
  86. Roman Garnett “Bayesian Optimization” Cambridge University Press, 2023
  87. Diederik P. Kingma and Jimmy Ba “Adam: A Method for Stochastic Optimization” arXiv, 2014 arXiv:1412.6980 [cs.LG]
  88. A. D. Bukin “Fitting function for asymmetric peaks”, 2007 arXiv:0711.4449 [physics.data-an]
  89. B.N. Delaunay “Sur la sphère vide” In Bull. Acad. Sci. URSS 1934.6, 1934, pp. 793–800
  90. ATLAS Collaboration “Measurement of the production cross section of pairs of isolated photons in p⁢p𝑝𝑝ppitalic_p italic_p collisions at 13⁢TeV13TeV13\,\text{TeV}13 TeV with the ATLAS detector” In JHEP 11, 2021, pp. 169 DOI: 10.1007/JHEP11(2021)169
  91. M. Bähr “Herwig++ physics and manual” In Eur. Phys. J. C 58, 2008, pp. 639 DOI: 10.1140/epjc/s10052-008-0798-9
  92. Johannes Bellm “Herwig 7.0/Herwig++ 3.0 release note” In Eur. Phys. J. C 76.4, 2016, pp. 196 DOI: 10.1140/epjc/s10052-016-4018-8
  93. ATLAS Collaboration “Measurements of inclusive and differential fiducial cross-sections of t⁢t¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG production with additional heavy-flavour jets in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In JHEP 04, 2019, pp. 046 DOI: 10.1007/JHEP04(2019)046
  94. ATLAS Collaboration “Study of heavy-flavor quarks produced in association with top-quark pairs at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV using the ATLAS detector” In Phys. Rev. D 89, 2014, pp. 072012 DOI: 10.1103/PhysRevD.89.072012
  95. ATLAS Collaboration “Measurement of the cross-section for W𝑊Witalic_W boson production in association with b𝑏bitalic_b-jets in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector” In JHEP 06, 2013, pp. 084 DOI: 10.1007/JHEP06(2013)084
  96. “Asymptotic formulae for likelihood-based tests of new physics” In Eur. Phys. J. C 71, 2011, pp. 1554 DOI: 10.1140/epjc/s10052-011-1554-0
  97. Alexander L. Read “Presentation of search results: the C⁢LS𝐶subscript𝐿𝑆CL_{S}italic_C italic_L start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT technique” In J. Phys. G 28, 2002, pp. 2693 DOI: 10.1088/0954-3899/28/10/313
  98. “Trial factors for the look elsewhere effect in high energy physics” In Eur. Phys. J. C 70, 2010, pp. 525–530 DOI: 10.1140/epjc/s10052-010-1470-8
  99. ATLAS Collaboration “ATLAS Computing Acknowledgements”, ATL-SOFT-PUB-2023-001, 2023 URL: https://cds.cern.ch/record/2869272
  100. CMS Collaboration In Nature 623, 2023, pp. E4 DOI: 10.1038/s41586-023-06164-8
  101. ATLAS Collaboration In Nature 612, 2022, pp. E24 DOI: 10.1038/s41586-022-05581-5
  102. In Symmetry 14, 2022, pp. 1546 DOI: 10.3390/sym14081546
  103. ATLAS Collaboration, 2012 URL: https://cds.cern.ch/record/1451888
  104. In Eur. Phys. J. C 73, 2013, pp. 2501 DOI: 10.1140/epjc/s10052-013-2501-z
Citations (1)

Summary

  • The paper demonstrates the search for a heavy scalar resonance X decaying into a Higgs boson and a lighter scalar S using 140 fb⁻¹ of 13 TeV ATLAS data.
  • Advanced parameterized neural networks are employed to optimize signal discrimination across a mass range of 170–1000 GeV for X and 15–500 GeV for S.
  • The analysis sets 95% CL upper limits on production cross-sections, with a notable 3.5σ local deviation observed at X = 575 GeV and S = 200 GeV.

Search for a Resonance Decaying into a Scalar Particle and a Higgs Boson at 13 TeV with the ATLAS Detector

This paper presents a detailed paper conducted by the ATLAS Collaboration, focusing on the search for a hypothetical heavy scalar resonance (denoted as X) decaying into a Standard Model Higgs boson (H) and a lighter scalar particle (S) in proton-proton collisions at a center-of-mass energy of 13 TeV. Employing data from the ATLAS detector at the Large Hadron Collider (LHC), this research aims to investigate a specific decay process of X to S and H, leading to a final state characterized by two bottom quarks (b-jets) and two photons.

Overview and Methodology

The paper analyzes an extensive dataset representing an integrated luminosity of 140 fb1^{-1}. The search covers a broad mass range for X (170–1000 GeV) and S (15–500 GeV), assessing the possibility of the coupling of the observed 125 GeV Higgs boson with additional scalar states, as predicted by various beyond the Standard Model (BSM) theories.

To confront the challenges posed by background processes that can mimic the expected signal, advanced analysis techniques were utilized. Notably, parameterized neural networks (PNNs) were implemented to optimize signal discrimination across the investigated mass parameter space, thus maintaining continuous sensitivity. The PNNs were trained to adapt to varying kinematic profiles associated with different mass hypotheses of X and S, allowing the generation of a dedicated discriminant for each hypothesis.

Experimental Results

The research results did not reveal any significant excess over the predicted Standard Model background. Consequently, the paper establishes 95% confidence level (CL) upper limits on the cross-section for the production of X, factoring in the decay to S and H, and subsequently the bbˉγγ\bar{b}\gamma\gamma final state. The limits range from 39 fb at lower X mass (170 GeV) to 0.09 fb at higher X mass (1000 GeV), with the most notable deviation noted for masses X = 575 GeV and S = 200 GeV, yielding a local significance of 3.5σ, although the global significance reduces this to 2.0σ.

Theoretical and Practical Implications

The research extends the frontier of exploration for extended Higgs sectors implied by BSM theories, investigating the complex landscape where additional scalar resonances might exist. It adds significant value by probing mass regions previously unexplored with such precision, thereby enhancing the understanding of potential scalar sector extensions.

From a theoretical viewpoint, this work informs future theoretical models and potential refinements necessary to accommodate or refute the presence of additional scalar states based on collider evidence. Pragmatically, it enriches the framework for detector-level analysis techniques in high-energy physics, underpinning future experiments with refined analytical tools such as the described neural network methodologies.

Speculation on Future Developments

Efforts such as these lay the groundwork for garnering further experimental insight into Higgs-like scalars. Progress in this domain would potentially require collecting more data at higher luminosities or energies and refining analytical techniques to discern subtle signals in complex collision environments.

The engagement of complementary experiments and advancements in detector technology may yield breakthroughs necessary for the resolution of current ambiguities in the scalar sector. The techniques demonstrated here may also transition to probing other elusive particles or interactions at the LHC or future colliders.