2000 character limit reached
Coding for Composite DNA to Correct Substitutions, Strand Losses, and Deletions (2404.12868v1)
Published 19 Apr 2024 in cs.IT and math.IT
Abstract: Composite DNA is a recent method to increase the base alphabet size in DNA-based data storage.This paper models synthesizing and sequencing of composite DNA and introduces coding techniques to correct substitutions, losses of entire strands, and symbol deletion errors. Non-asymptotic upper bounds on the size of codes with $t$ occurrences of these error types are derived. Explicit constructions are presented which can achieve the bounds.
- George M. Church, Yuan Gao and Sriram Kosuri “Next-Generation Digital Information Storage in DNA” In Science 337.6102 American Association for the Advancement of Science, 2012, pp. 1628–1628 DOI: 10.1126/science.1226355
- “Towards Practical, High-Capacity, Low-Maintenance Information Storage in Synthesized DNA” In Nature 494.7435 Nature Publishing Group, 2013, pp. 77–80 DOI: 10.1038/nature11875
- “DNA Fountain Enables a Robust and Efficient Storage Architecture” In Science 355.6328 American Association for the Advancement of Science, 2017, pp. 950–954 DOI: 10.1126/science.aaj2038
- “Random Access in Large-Scale DNA Data Storage” In Nature Biotechnology 36.3 Nature Publishing Group, 2018, pp. 242–248 DOI: 10.1038/nbt.4079
- “Data Storage in DNA with Fewer Synthesis Cycles Using Composite DNA Letters” In Nature Biotechnology 37.10, 2019, pp. 1229–1236 DOI: 10.1038/s41587-019-0240-x
- “High Information Capacity DNA-based Data Storage with Augmented Encoding Characters Using Degenerate Bases” In Scientific Reports 9.1 Nature Publishing Group, 2019, pp. 6582 DOI: 10.1038/s41598-019-43105-w
- “Deep DNA Storage: Scalable and Robust DNA Storage via Coding Theory and Deep Learning”, 2021 DOI: 10.48550/arXiv.2109.00031
- “Reconstruction Algorithms for DNA-storage Systems” In Scientific Reports 14.1 Nature Publishing Group, 2024, pp. 1951 DOI: 10.1038/s41598-024-51730-3
- “Efficient DNA-based Data Storage Using Shortmer Combinatorial Encoding”, 2024, pp. 2021.08.01.454622 DOI: 10.1101/2021.08.01.454622
- “Scaling Logical Density of DNA Storage with Enzymatically-Ligated Composite Motifs” In Scientific Reports 13.1 Nature Publishing Group, 2023, pp. 15978 DOI: 10.1038/s41598-023-43172-0
- Adir Kobovich, Eitan Yaakobi and Nir Weinberger “M-DAB: An Input-Distribution Optimization Algorithm for Composite DNA Storage by the Multinomial Channel”, 2023 DOI: 10.13140/RG.2.2.36212.53121
- “Sequencing Coverage Analysis for Combinatorial DNA-based Storage Systems”, 2024, pp. 2024.01.10.574966 DOI: 10.1101/2024.01.10.574966
- “Optimizing the Decoding Probability and Coverage Ratio of Composite DNA” In accepted for IEEE International Symposium on Information Theory, 2024
- Wenkai Zhang, Zhen Chen and Zhiying Wang “Limited-Magnitude Error Correction for Probability Vectors in DNA Storage” In ICC 2022 - IEEE International Conference on Communications Seoul, Korea, Republic of: IEEE, 2022, pp. 3460–3465 DOI: 10.1109/ICC45855.2022.9838471
- Luca G. Tallini and Bella Bose “On L1-distance Error Control Codes” In 2011 IEEE International Symposium on Information Theory Proceedings, 2011, pp. 1061–1065 DOI: 10.1109/ISIT.2011.6033693
- Luca G. Tallini and Bella Bose “On Symmetric L1 Distance Error Control Codes and Elementary Symmetric Functions” In 2012 IEEE International Symposium on Information Theory Proceedings, 2012, pp. 741–745 DOI: 10.1109/ISIT.2012.6284657
- Tingting Chen, Yiming Ma and Xiande Zhang “Optimal Codes With Small Constant Weight in $\ell_1$-Metric” In IEEE Transactions on Information Theory 67.7, 2021, pp. 4239–4254 DOI: 10.1109/TIT.2021.3052191
- Tuvi Etzion, Alexander Vardy and Eitan Yaakobi “Coding for the Lee and Manhattan Metrics With Weighing Matrices” In IEEE Transactions on Information Theory 59.10, 2013, pp. 6712–6723 DOI: 10.1109/TIT.2013.2268156
- “Lectures on Advances in Combinatorics” Berlin, Heidelberg: Springer, 2008 DOI: 10.1007/978-3-540-78602-3
- Vladimir I Levenshtein “Binary Codes Capable of Correcting Deletions, Insertions, and Reversals” In Soviet Physics Doklady 10.8 Soviet Union, 1966, pp. 707–710
- N.J.A. Sloane “On Single-Deletion-Correcting Codes”, 2002 arXiv: http://arxiv.org/abs/math/0207197
- “Codes Which Correct Single Asymmetric Errors (in Russian)” In Automatika i Telemkhanika 161.3, 1965, pp. 288–292
- Ankur A. Kulkarni and Negar Kiyavash “Nonasymptotic Upper Bounds for Deletion Correcting Codes” In IEEE Transactions on Information Theory 59.8, 2013, pp. 5115–5130 DOI: 10.1109/TIT.2013.2257917