Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coding for Composite DNA to Correct Substitutions, Strand Losses, and Deletions (2404.12868v1)

Published 19 Apr 2024 in cs.IT and math.IT

Abstract: Composite DNA is a recent method to increase the base alphabet size in DNA-based data storage.This paper models synthesizing and sequencing of composite DNA and introduces coding techniques to correct substitutions, losses of entire strands, and symbol deletion errors. Non-asymptotic upper bounds on the size of codes with $t$ occurrences of these error types are derived. Explicit constructions are presented which can achieve the bounds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. George M. Church, Yuan Gao and Sriram Kosuri “Next-Generation Digital Information Storage in DNA” In Science 337.6102 American Association for the Advancement of Science, 2012, pp. 1628–1628 DOI: 10.1126/science.1226355
  2. “Towards Practical, High-Capacity, Low-Maintenance Information Storage in Synthesized DNA” In Nature 494.7435 Nature Publishing Group, 2013, pp. 77–80 DOI: 10.1038/nature11875
  3. “DNA Fountain Enables a Robust and Efficient Storage Architecture” In Science 355.6328 American Association for the Advancement of Science, 2017, pp. 950–954 DOI: 10.1126/science.aaj2038
  4. “Random Access in Large-Scale DNA Data Storage” In Nature Biotechnology 36.3 Nature Publishing Group, 2018, pp. 242–248 DOI: 10.1038/nbt.4079
  5. “Data Storage in DNA with Fewer Synthesis Cycles Using Composite DNA Letters” In Nature Biotechnology 37.10, 2019, pp. 1229–1236 DOI: 10.1038/s41587-019-0240-x
  6. “High Information Capacity DNA-based Data Storage with Augmented Encoding Characters Using Degenerate Bases” In Scientific Reports 9.1 Nature Publishing Group, 2019, pp. 6582 DOI: 10.1038/s41598-019-43105-w
  7. “Deep DNA Storage: Scalable and Robust DNA Storage via Coding Theory and Deep Learning”, 2021 DOI: 10.48550/arXiv.2109.00031
  8. “Reconstruction Algorithms for DNA-storage Systems” In Scientific Reports 14.1 Nature Publishing Group, 2024, pp. 1951 DOI: 10.1038/s41598-024-51730-3
  9. “Efficient DNA-based Data Storage Using Shortmer Combinatorial Encoding”, 2024, pp. 2021.08.01.454622 DOI: 10.1101/2021.08.01.454622
  10. “Scaling Logical Density of DNA Storage with Enzymatically-Ligated Composite Motifs” In Scientific Reports 13.1 Nature Publishing Group, 2023, pp. 15978 DOI: 10.1038/s41598-023-43172-0
  11. Adir Kobovich, Eitan Yaakobi and Nir Weinberger “M-DAB: An Input-Distribution Optimization Algorithm for Composite DNA Storage by the Multinomial Channel”, 2023 DOI: 10.13140/RG.2.2.36212.53121
  12. “Sequencing Coverage Analysis for Combinatorial DNA-based Storage Systems”, 2024, pp. 2024.01.10.574966 DOI: 10.1101/2024.01.10.574966
  13. “Optimizing the Decoding Probability and Coverage Ratio of Composite DNA” In accepted for IEEE International Symposium on Information Theory, 2024
  14. Wenkai Zhang, Zhen Chen and Zhiying Wang “Limited-Magnitude Error Correction for Probability Vectors in DNA Storage” In ICC 2022 - IEEE International Conference on Communications Seoul, Korea, Republic of: IEEE, 2022, pp. 3460–3465 DOI: 10.1109/ICC45855.2022.9838471
  15. Luca G. Tallini and Bella Bose “On L1-distance Error Control Codes” In 2011 IEEE International Symposium on Information Theory Proceedings, 2011, pp. 1061–1065 DOI: 10.1109/ISIT.2011.6033693
  16. Luca G. Tallini and Bella Bose “On Symmetric L1 Distance Error Control Codes and Elementary Symmetric Functions” In 2012 IEEE International Symposium on Information Theory Proceedings, 2012, pp. 741–745 DOI: 10.1109/ISIT.2012.6284657
  17. Tingting Chen, Yiming Ma and Xiande Zhang “Optimal Codes With Small Constant Weight in $\ell_1$-Metric” In IEEE Transactions on Information Theory 67.7, 2021, pp. 4239–4254 DOI: 10.1109/TIT.2021.3052191
  18. Tuvi Etzion, Alexander Vardy and Eitan Yaakobi “Coding for the Lee and Manhattan Metrics With Weighing Matrices” In IEEE Transactions on Information Theory 59.10, 2013, pp. 6712–6723 DOI: 10.1109/TIT.2013.2268156
  19. “Lectures on Advances in Combinatorics” Berlin, Heidelberg: Springer, 2008 DOI: 10.1007/978-3-540-78602-3
  20. Vladimir I Levenshtein “Binary Codes Capable of Correcting Deletions, Insertions, and Reversals” In Soviet Physics Doklady 10.8 Soviet Union, 1966, pp. 707–710
  21. N.J.A. Sloane “On Single-Deletion-Correcting Codes”, 2002 arXiv: http://arxiv.org/abs/math/0207197
  22. “Codes Which Correct Single Asymmetric Errors (in Russian)” In Automatika i Telemkhanika 161.3, 1965, pp. 288–292
  23. Ankur A. Kulkarni and Negar Kiyavash “Nonasymptotic Upper Bounds for Deletion Correcting Codes” In IEEE Transactions on Information Theory 59.8, 2013, pp. 5115–5130 DOI: 10.1109/TIT.2013.2257917
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com