Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum non-classicality in the simplest causal network (2404.12790v1)

Published 19 Apr 2024 in quant-ph

Abstract: Bell's theorem prompts us with a fundamental inquiry: what is the simplest scenario leading to the incompatibility between quantum correlations and the classical theory of causality? Here we demonstrate that quantum non-classicality is possible in a network consisting of only three dichotomic variables, without the need of the locality assumption neither external measurement choices. We also show that the use of interventions, a central tool in the field of causal inference, significantly improves the noise robustness of this new kind of non-classical behaviour, making it feasible for experimental tests with current technology.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. J. S. Bell, On the einstein podolsky rosen paradox, Physics Physique Fizika 1, 195 (1964).
  2. J. Pearl, Causality (Cambridge university press, 2009).
  3. C. J. Wood and R. W. Spekkens, The lesson of causal discovery algorithms for quantum correlations: causal explanations of bell-inequality violations require fine-tuning, New Journal of Physics 17, 033002 (2015).
  4. E. Wolfe, R. W. Spekkens, and T. Fritz, The inflation technique for causal inference with latent variables, Journal of Causal Inference 7, 20170020 (2019).
  5. T. Fritz, Beyond bell’s theorem: correlation scenarios, New Journal of Physics 14, 103001 (2012).
  6. I. Šupić, J.-D. Bancal, and N. Brunner, Quantum nonlocality in networks can be demonstrated with an arbitrarily small level of independence between the sources, Physical Review Letters 125, 240403 (2020).
  7. J. B. Brask and R. Chaves, Bell scenarios with communication, Journal of Physics A: Mathematical and Theoretical 50, 094001 (2017).
  8. X. Coiteux-Roy, E. Wolfe, and M.-O. Renou, No bipartite-nonlocal causal theory can explain nature’s correlations, Physical review letters 127, 200401 (2021).
  9. A. Pozas-Kerstjens, N. Gisin, and A. Tavakoli, Full network nonlocality, Physical review letters 128, 010403 (2022).
  10. M. Gachechiladze, N. Miklin, and R. Chaves, Quantifying causal influences in the presence of a quantum common cause, Physical Review Letters 125, 230401 (2020).
  11. R. J. Evans, Graphs for margins of bayesian networks, Scandinavian Journal of Statistics 43, 625 (2016).
  12. J. Pearl, On the testability of causal models with latent and instrumental variables, in Proceedings of the Eleventh conference on Uncertainty in artificial intelligence (1995) pp. 435–443.
  13. A. Balke and J. Pearl, Bounds on treatment effects from studies with imperfect compliance, Journal of the American statistical Association 92, 1171 (1997).
  14. L. D. Garcia, M. Stillman, and B. Sturmfels, Algebraic geometry of bayesian networks, Journal of Symbolic Computation 39, 331 (2005).
  15. R. Chaves, Polynomial bell inequalities, Physical review letters 116, 010402 (2016).
  16. J. Nocedal and S. J. Wright, Quadratic programming, Numerical optimization , 448 (2006).
  17. C. Branciard, N. Gisin, and S. Pironio, Characterizing the nonlocal correlations created via entanglement swapping, Physical review letters 104, 170401 (2010).
  18. S. P. Boyd and L. Vandenberghe, Convex optimization (Cambridge university press, 2004).
  19. Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual (2022).
  20. We obtain this classical upper bound using QP with a precision of 10−9superscript10910^{-9}10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT.
  21. J. Henson, R. Lal, and M. F. Pusey, Theory-independent limits on correlations from generalized bayesian networks, New Journal of Physics 16, 113043 (2014).
  22. P. Sekatski, S. Boreiri, and N. Brunner, Partial self-testing and randomness certification in the triangle network, Physical Review Letters 131, 100201 (2023).
  23. C. M. Lee and M. J. Hoban, Towards device-independent information processing on general quantum networks, Physical review letters 120, 020504 (2018).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com