AutoInspect: Towards Long-Term Autonomous Industrial Inspection (2404.12785v3)
Abstract: We give an overview of AutoInspect, a ROS-based software system for robust and extensible mission-level autonomy. Over the past three years AutoInspect has been deployed in a variety of environments, including at a mine, a chemical plant, a mock oil rig, decommissioned nuclear power plants, and a fusion reactor for durations ranging from hours to weeks. The system combines robust mapping and localisation with graph-based autonomous navigation, mission execution, and scheduling to achieve a complete autonomous inspection system. The time from arrival at a new site to autonomous mission execution can be under an hour. It is deployed on a Boston Dynamics Spot robot using a custom sensing and compute payload called Frontier. In this work we go into detail of the system's performance in two long-term deployments of 49 days at a robotics test facility, and 35 days at the Joint European Torus (JET) fusion reactor in Oxfordshire, UK.
- D. Wisth, M. Camurri, and M. Fallon, “VILENS: Visual, inertial, lidar, and leg odometry for all-terrain legged robots,” IEEE Trans. Robotics, vol. 39, no. 1, pp. 309–326, 2023.
- M. Ramezani, G. Tinchev, E. Iuganov, and M. Fallon, “Online LiDAR-SLAM for legged robots with robust registration and deep-learned loop closure,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2020, pp. 4158–4164.
- M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,” in ICRA Workshop on Open Source Software, vol. 3, 01 2009.
- C. D. Bellicoso, M. Bjelonic, L. Wellhausen, K. Holtmann, F. Günther, M. Tranzatto, P. Fankhauser, and M. Hutter, “Advances in real-world applications for legged robots,” J. Field Robot., vol. 35, no. 8, pp. 1311–1326, 2018.
- C. Gehring, P. Fankhauser, L. Isler, R. Diethelm, S. Bachmann, M. Potz, L. Gerstenberg, and M. Hutter, “ANYmal in the field: Solving industrial inspection of an offshore HVDC platform with a quadrupedal robot,” in Field and Service Robotics, 2021, pp. 247–260.
- “ANYmal inspection solution capabilities,” https://www.anybotics.com/robotics/robot-capabilities, accessed: 2024-03-18.
- “Boston Dynamics Orbit,” https://bostondynamics.com/products/orbit/, accessed: 2024-03-18.
- D. Lattanzi and G. Miller, “Review of robotic infrastructure inspection systems,” J. of Infrastructure Systems, vol. 23, no. 3, Sep. 2017.
- K. Loupos, A. D. Doulamis, C. Stentoumis, E. Protopapadakis, K. Makantasis, N. D. Doulamis, A. Amditis, P. Chrobocinski, J. Victores, R. Montero, E. Menendez, C. Balaguer, R. Lopez, M. Cantero, R. Navarro, A. Roncaglia, L. Belsito, S. Camarinopoulos, N. Komodakis, and P. Singh, “Autonomous robotic system for tunnel structural inspection and assessment,” Intl. J. of Intelligent Robotics and Applications, vol. 2, no. 1, pp. 43–66, Mar. 2018.
- F. Rocha, G. Garcia, R. F. S. Pereira, H. D. Faria, T. H. Silva, R. H. R. Andrade, E. S. Barbosa, A. Almeida, E. Cruz, W. Andrade, W. G. Serrantola, L. Moura, H. Azpúrua, A. Franca, G. Pessin, G. M. Freitas, R. R. Costa, and F. Lizarralde, “ROSI: A robotic system for harsh outdoor industrial inspection - system design and applications,” J. of Intelligent & Robotic Systems, vol. 103, no. 2, p. 30, Oct. 2021.
- J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart, “Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2016, pp. 4304–4311.
- L. F. T. Fu, N. Chebrolu, and M. Fallon, “Extrinsic calibration of camera to lidar using a differentiable checkerboard model,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2023, pp. 1825–1831.
- L. Zhang, M. Helmberger, L. Fu, D. Wisth, M. Camurri, D. Scaramuzza, and M. Fallon, “Hilti-Oxford Dataset: A millimeter-accurate benchmark for simultaneous localization and mapping,” IEEE Robot. Autom. Lett. (RA-L), vol. 8, pp. 408–415, 01 2023.
- A. Proudman, M. Ramezani, S. T. Digumarti, N. Chebrolu, and M. Fallon, “Towards real-time forest inventory using handheld LiDAR,” IEEE Robot. Auton. Syst., vol. 157, p. 104240, 2022.
- R. Border, N. Chebrolu, Y. Tao, J. D. Gammell, and M. F. Fallon, “Osprey: Multi-session autonomous aerial mapping with lidar-based SLAM and next best view planning,” CoRR, vol. abs/2311.03484, 2023.
- F. Dellaert and M. Kaess, “Factor Graphs for Robot Perception,” Foundations and Trends in Robotics, vol. 6, pp. 1–139, 2017.
- G. Kim and A. Kim, “Scan Context: Egocentric spatial descriptor for place recognition within 3D point cloud map,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018, pp. 4802–4809.
- J. Rowell, L. Zhang, and M. Fallon, “LiSTA: Geometric object-based change detection in cluttered environments,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2024.
- L. Zhang, S. Tejaswi Digumarti, G. Tinchev, and M. Fallon, “InstaLoc: One-shot Global Lidar Localisation in Indoor Environments through Instance Learning,” in Robotics: Science and Systems (RSS), 2023.
- B. Kuipers, “Modeling Spatial Knowledge,” Cognitive Science, vol. 2, no. 2, pp. 129–153, Apr. 1978.
- R. Brooks, “Visual map making for a mobile robot,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), vol. 2, 1985, pp. 824–829.
- L. Kunze, M. Beetz, M. Saito, H. Azuma, K. Okada, and M. Inaba, “Searching objects in large-scale indoor environments: A decision-theoretic approach,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), St Paul, MN, USA, May 2012, pp. 4385–4390.
- L. Mudrova, B. Lacerda, and N. Hawes, “An integrated control framework for long-term autonomy in mobile service robots,” in European Conference on Mobile Robotics (ECMR), Sep. 2015, pp. 1–6.
- N. Hawes, C. Burbridge, F. Jovan, L. Kunze, B. Lacerda, L. Mudrova, J. Young, J. Wyatt, D. Hebesberger, T. Kortner, R. Ambrus, N. Bore, J. Folkesson, P. Jensfelt, L. Beyer, A. Hermans, B. Leibe, A. Aldoma, T. Faulhammer, M. Zillich, M. Vincze, E. Chinellato, M. Al-Omari, P. Duckworth, Y. Gatsoulis, D. C. Hogg, A. G. Cohn, C. Dondrup, J. Pulido Fentanes, T. Krajnik, J. M. Santos, T. Duckett, and M. Hanheide, “The STRANDS Project: Long-term autonomy in everyday environments,” IEEE Robotics & Automation Magazine, vol. 24, no. 3, pp. 146–156, Sep. 2017.
- G. Das, G. Cielniak, J. Heselden, S. Pearson, F. D. Duchetto, Z. Zhu, J. Dichtl, M. Hanheide, J. P. Fentanes, A. Binch, M. Hutchinson, and P. From, “A unified topological representation for robotic fleets in agricultural applications,” Sep. 2023.
- B. Lacerda, F. Faruq, D. Parker, and N. Hawes, “Probabilistic planning with formal performance guarantees for mobile service robots,” Intl. J. of Robot. Res., vol. 38, no. 9, pp. 1098–1123, Aug. 2019.
- Z. Li, J. D. Wegner, and A. Lucchi, “Topological map extraction from overhead images,” in Intl. Conf. on Computer Vision (ICCV). IEEE, Oct. 2019, pp. 1715–1724.
- S. Thrun and A. Bücken, “Integrating grid-based and topological maps for mobile robot navigation,” in National Conf. on Artificial Intelligence, 1996.
- Z. Zivkovic, B. Bakker, and B. Krose, “Hierarchical map building and planning based on graph partitioning,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2006, pp. 803–809.
- F. Blochliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart, “Topomap: Topological mapping and navigation based on visual SLAM maps,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), May 2018, pp. 3818–3825.
- M. Gadd, D. De Martini, L. Pitt, W. Tubby, M. Towlson, C. Prahacs, O. Bartlett, M. Qi, P. Newman, A. Hector, R. Salguero-Gómez, and N. Hawes, “Watching Grass Grow: Long-term Visual Navigation and Mission Planning for Autonomous Biodiversity Monitoring,” arXiv preprint arXiv:2404.10446, 2024.
- E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The Office Marathon: Robust navigation in an indoor office environment,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2010, pp. 300 – 307.
- “spot_ros driver,” https://github.com/heuristicus/spot_ros, accessed: 2024-03-18.