Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AutoInspect: Towards Long-Term Autonomous Industrial Inspection (2404.12785v3)

Published 19 Apr 2024 in cs.RO

Abstract: We give an overview of AutoInspect, a ROS-based software system for robust and extensible mission-level autonomy. Over the past three years AutoInspect has been deployed in a variety of environments, including at a mine, a chemical plant, a mock oil rig, decommissioned nuclear power plants, and a fusion reactor for durations ranging from hours to weeks. The system combines robust mapping and localisation with graph-based autonomous navigation, mission execution, and scheduling to achieve a complete autonomous inspection system. The time from arrival at a new site to autonomous mission execution can be under an hour. It is deployed on a Boston Dynamics Spot robot using a custom sensing and compute payload called Frontier. In this work we go into detail of the system's performance in two long-term deployments of 49 days at a robotics test facility, and 35 days at the Joint European Torus (JET) fusion reactor in Oxfordshire, UK.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. D. Wisth, M. Camurri, and M. Fallon, “VILENS: Visual, inertial, lidar, and leg odometry for all-terrain legged robots,” IEEE Trans. Robotics, vol. 39, no. 1, pp. 309–326, 2023.
  2. M. Ramezani, G. Tinchev, E. Iuganov, and M. Fallon, “Online LiDAR-SLAM for legged robots with robust registration and deep-learned loop closure,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2020, pp. 4158–4164.
  3. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,” in ICRA Workshop on Open Source Software, vol. 3, 01 2009.
  4. C. D. Bellicoso, M. Bjelonic, L. Wellhausen, K. Holtmann, F. Günther, M. Tranzatto, P. Fankhauser, and M. Hutter, “Advances in real-world applications for legged robots,” J. Field Robot., vol. 35, no. 8, pp. 1311–1326, 2018.
  5. C. Gehring, P. Fankhauser, L. Isler, R. Diethelm, S. Bachmann, M. Potz, L. Gerstenberg, and M. Hutter, “ANYmal in the field: Solving industrial inspection of an offshore HVDC platform with a quadrupedal robot,” in Field and Service Robotics, 2021, pp. 247–260.
  6. “ANYmal inspection solution capabilities,” https://www.anybotics.com/robotics/robot-capabilities, accessed: 2024-03-18.
  7. “Boston Dynamics Orbit,” https://bostondynamics.com/products/orbit/, accessed: 2024-03-18.
  8. D. Lattanzi and G. Miller, “Review of robotic infrastructure inspection systems,” J. of Infrastructure Systems, vol. 23, no. 3, Sep. 2017.
  9. K. Loupos, A. D. Doulamis, C. Stentoumis, E. Protopapadakis, K. Makantasis, N. D. Doulamis, A. Amditis, P. Chrobocinski, J. Victores, R. Montero, E. Menendez, C. Balaguer, R. Lopez, M. Cantero, R. Navarro, A. Roncaglia, L. Belsito, S. Camarinopoulos, N. Komodakis, and P. Singh, “Autonomous robotic system for tunnel structural inspection and assessment,” Intl. J. of Intelligent Robotics and Applications, vol. 2, no. 1, pp. 43–66, Mar. 2018.
  10. F. Rocha, G. Garcia, R. F. S. Pereira, H. D. Faria, T. H. Silva, R. H. R. Andrade, E. S. Barbosa, A. Almeida, E. Cruz, W. Andrade, W. G. Serrantola, L. Moura, H. Azpúrua, A. Franca, G. Pessin, G. M. Freitas, R. R. Costa, and F. Lizarralde, “ROSI: A robotic system for harsh outdoor industrial inspection - system design and applications,” J. of Intelligent & Robotic Systems, vol. 103, no. 2, p. 30, Oct. 2021.
  11. J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart, “Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2016, pp. 4304–4311.
  12. L. F. T. Fu, N. Chebrolu, and M. Fallon, “Extrinsic calibration of camera to lidar using a differentiable checkerboard model,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2023, pp. 1825–1831.
  13. L. Zhang, M. Helmberger, L. Fu, D. Wisth, M. Camurri, D. Scaramuzza, and M. Fallon, “Hilti-Oxford Dataset: A millimeter-accurate benchmark for simultaneous localization and mapping,” IEEE Robot. Autom. Lett. (RA-L), vol. 8, pp. 408–415, 01 2023.
  14. A. Proudman, M. Ramezani, S. T. Digumarti, N. Chebrolu, and M. Fallon, “Towards real-time forest inventory using handheld LiDAR,” IEEE Robot. Auton. Syst., vol. 157, p. 104240, 2022.
  15. R. Border, N. Chebrolu, Y. Tao, J. D. Gammell, and M. F. Fallon, “Osprey: Multi-session autonomous aerial mapping with lidar-based SLAM and next best view planning,” CoRR, vol. abs/2311.03484, 2023.
  16. F. Dellaert and M. Kaess, “Factor Graphs for Robot Perception,” Foundations and Trends in Robotics, vol. 6, pp. 1–139, 2017.
  17. G. Kim and A. Kim, “Scan Context: Egocentric spatial descriptor for place recognition within 3D point cloud map,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018, pp. 4802–4809.
  18. J. Rowell, L. Zhang, and M. Fallon, “LiSTA: Geometric object-based change detection in cluttered environments,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2024.
  19. L. Zhang, S. Tejaswi Digumarti, G. Tinchev, and M. Fallon, “InstaLoc: One-shot Global Lidar Localisation in Indoor Environments through Instance Learning,” in Robotics: Science and Systems (RSS), 2023.
  20. B. Kuipers, “Modeling Spatial Knowledge,” Cognitive Science, vol. 2, no. 2, pp. 129–153, Apr. 1978.
  21. R. Brooks, “Visual map making for a mobile robot,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), vol. 2, 1985, pp. 824–829.
  22. L. Kunze, M. Beetz, M. Saito, H. Azuma, K. Okada, and M. Inaba, “Searching objects in large-scale indoor environments: A decision-theoretic approach,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), St Paul, MN, USA, May 2012, pp. 4385–4390.
  23. L. Mudrova, B. Lacerda, and N. Hawes, “An integrated control framework for long-term autonomy in mobile service robots,” in European Conference on Mobile Robotics (ECMR), Sep. 2015, pp. 1–6.
  24. N. Hawes, C. Burbridge, F. Jovan, L. Kunze, B. Lacerda, L. Mudrova, J. Young, J. Wyatt, D. Hebesberger, T. Kortner, R. Ambrus, N. Bore, J. Folkesson, P. Jensfelt, L. Beyer, A. Hermans, B. Leibe, A. Aldoma, T. Faulhammer, M. Zillich, M. Vincze, E. Chinellato, M. Al-Omari, P. Duckworth, Y. Gatsoulis, D. C. Hogg, A. G. Cohn, C. Dondrup, J. Pulido Fentanes, T. Krajnik, J. M. Santos, T. Duckett, and M. Hanheide, “The STRANDS Project: Long-term autonomy in everyday environments,” IEEE Robotics & Automation Magazine, vol. 24, no. 3, pp. 146–156, Sep. 2017.
  25. G. Das, G. Cielniak, J. Heselden, S. Pearson, F. D. Duchetto, Z. Zhu, J. Dichtl, M. Hanheide, J. P. Fentanes, A. Binch, M. Hutchinson, and P. From, “A unified topological representation for robotic fleets in agricultural applications,” Sep. 2023.
  26. B. Lacerda, F. Faruq, D. Parker, and N. Hawes, “Probabilistic planning with formal performance guarantees for mobile service robots,” Intl. J. of Robot. Res., vol. 38, no. 9, pp. 1098–1123, Aug. 2019.
  27. Z. Li, J. D. Wegner, and A. Lucchi, “Topological map extraction from overhead images,” in Intl. Conf. on Computer Vision (ICCV).   IEEE, Oct. 2019, pp. 1715–1724.
  28. S. Thrun and A. Bücken, “Integrating grid-based and topological maps for mobile robot navigation,” in National Conf. on Artificial Intelligence, 1996.
  29. Z. Zivkovic, B. Bakker, and B. Krose, “Hierarchical map building and planning based on graph partitioning,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2006, pp. 803–809.
  30. F. Blochliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart, “Topomap: Topological mapping and navigation based on visual SLAM maps,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), May 2018, pp. 3818–3825.
  31. M. Gadd, D. De Martini, L. Pitt, W. Tubby, M. Towlson, C. Prahacs, O. Bartlett, M. Qi, P. Newman, A. Hector, R. Salguero-Gómez, and N. Hawes, “Watching Grass Grow: Long-term Visual Navigation and Mission Planning for Autonomous Biodiversity Monitoring,” arXiv preprint arXiv:2404.10446, 2024.
  32. E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The Office Marathon: Robust navigation in an indoor office environment,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2010, pp. 300 – 307.
  33. “spot_ros driver,” https://github.com/heuristicus/spot_ros, accessed: 2024-03-18.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com