Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Piecewise Semi-Analytical Formulation for the Analysis of Coupled-Oscillator Systems (2404.12780v1)

Published 19 Apr 2024 in eess.SY, cs.SY, and nlin.AO

Abstract: A new simulation technique to obtain the synchronized steady-state solutions existing in coupled oscillator systems is presented. The technique departs from a semi-analytical formulation presented in previous works. It extends the model of the admittance function describing each individual oscillator to a piecewise linear one. This provides a global formulation of the coupled system, considering the whole characteristic of each voltage-controlled oscillator (VCO) in the array. In comparison with the previous local formulation, the new formulation significantly improves the accuracy in the prediction of the system synchronization ranges. The technique has been tested by comparison with computationally demanding circuit-level Harmonic Balance simulations in an array of Van der Pol-type oscillators and then applied to a coupled system of FET based oscillators at 5 GHz, with very good agreement with measurements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. J. J. Lynch and R. A. York, “Synchronization of oscillators coupled through narrow-band networks,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 2, pp. 237–249, Feb. 2001.
  2. T. Heath, “Simultaneous beam steering and null formation with coupled, nonlinear oscillator arrays,” IEEE Trans. Antennas Propag., vol. 53, no. 6, pp. 2031–2035, 2005.
  3. R. J. Pogorzelski, “Continuum modeling of coupled oscillator arrays with coupling delay,” Radio Science, vol. 43, no. 04, pp. 1–12, Aug. 2008.
  4. T. Kijsanayotin, J. Li, and J. F. Buckwalter, “A 70-GHz LO phase-shifting bidirectional frontend using linear coupled oscillators,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 3, pp. 892–904, March 2017.
  5. L. Qi, Q. Xie, L. Deng, and Z. Wang, “A novel terahertz phased array based on coupled oscillators,” in 2018 IEEE MTT-S International Wireless Symposium (IWS), May 2018, pp. 1–3.
  6. O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz, “Distributed synchronization in wireless networks,” IEEE Signal Process. Mag., vol. 25, no. 5, pp. 81–97, Sept 2008.
  7. M. Pontón and A. Suárez, “Stability analysis of wireless coupled-oscillator circuits,” in 2017 IEEE MTT-S International Microwave Symposium (IMS), June 2017, pp. 83–86.
  8. M. Pontón, A. Herrera, and A. Suárez, “Wireless-coupled oscillator systems with an injection-locking signal,” IEEE Trans. Microw. Theory Tech., vol. (Early access), pp. 1–17, 2018.
  9. A. Suarez, F. Ramirez, and S. Sancho, “Stability and noise analysis of coupled-oscillator systems,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 1032–1046, Apr. 2011.
  10. A. Suarez, S. Sancho, and F. Ramirez, “General formulation for the analysis of injection-locked coupled-oscillator systems,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 12, pp. 4730–4744, Dec. 2013.
  11. A. Suárez, F. Ramírez, S. Sancho, and J. M. Collantes, “Global stability analysis of coupled-oscillator systems,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 1, pp. 165–180, Jan. 2015.
  12. F. Ramirez, E. de Cos, and A. Suarez, “Nonlinear analysis tools for the optimized design of harmonic-injection dividers,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 6, June, 2003.
  13. S. Sancho, F. Ramírez, and A. Suárez, “Stochastic analysis of cycle slips in injection-locked oscillators and analog frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 12, pp. 3318–3332, Dec. 2014.
  14. M. Pontón and A. Suárez, “Oscillation modes in symmetrical wireless-locked systems,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 5, pp. 2495–2510, May 2018.
  15. F. Ramírez, S. Sancho, M. Pontón, and A. Suárez, “Two-scale envelope-domain analysis of injected chirped oscillators,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 12, pp. 5449–5461, Dec 2018.
  16. R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351–357, June 1946.
  17. F. Ramírez, M. Pontón, S. Sancho, and A. Suárez, “Phase-noise analysis of injection-locked oscillators and analog frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, Feb. 2008.
  18. H. C. Chang, X. Cao, U. K. Mishra, and R. A. York, “Phase noise in coupled oscillator theory and experiment,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 5, pp. 604–615, May 1997.
  19. R. Pogorzelski, “A 5-by-5 element coupled oscillator-based phased array,” IEEE Trans. Antennas Propag., vol. 53, no. 4, pp. 1337–1345, Apr. 2005.
  20. R. A. York, “Nonlinear analysis of phase relationships in quasi-optical oscillator arrays,” IEEE Transactions on Microwave Theory and Techniques, vol. 41, no. 10, pp. 1799–1809, Oct 1993.
  21. K. Kurokawa, “Some basic characteristics of broadband negative resistance oscillator circuits,” The Bell System Technical Journal, vol. 48, no. 6, pp. 1937–1955, July 1969.
  22. B. Pérez, V. Arana, J. Pérez-Mato, and F. Cabrera, “360 degree phase detector cell for measurement systems based on switched dual multipliers,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 27, no. 5, pp. 503–505, May 2017.
  23. “Keysight: Using oscport.” [Online]. Available: http://edadocs.software.keysight.com/pages/viewpage.action?pageId=5919753#HarmonicBalanceforOscillatorSimulation-UsingOscPort
  24. A. Collado, F. Ramirez, A. Suarez, and J. Pascual, “Harmonic-balance analysis and synthesis of coupled-oscillator arrays,” IEEE Microw. Wireless Compon. Lett, vol. 14, no. 5, p. 192, May 2004.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com