Enumerating low-frequency nonphononic vibrations in computer glasses (2404.12735v2)
Abstract: In addition to Goldstone phonons that generically emerge in the low-frequency vibrational spectrum of any solid, crystalline or glassy, structural glasses also feature other low-frequency vibrational modes. The nature and statistical properties of these modes -- often termed `excess modes' -- have been the subject of decades-long investigation. Studying them, even using well-controlled computer glasses, has proven challenging due to strong spatial hybridization effects between phononic and nonphononic excitations, which hinder quantitative analyses of the nonphononic contribution ${\cal D}{\rm G}(\omega)$ to the total spectrum ${\cal D}(\omega)$, per frequency $\omega$. Here, using recent advances indicating that ${\cal D}{\rm G}(\omega)!=!{\cal D}(\omega)-{\cal D}{\rm D}(\omega)$, where ${\cal D}{\rm D}(\omega)$ is Debye's spectrum of phonons, we present a simple and straightforward scheme to enumerate nonphononic modes in computer glasses. Our analysis establishes that nonphononic modes in computer glasses indeed make an additive contribution to the total spectrum, including in the presence of strong hybridizations. Moreover, it cleanly reveals the universal ${\cal D}_{\rm G}(\omega)!\sim!\omega4$ tail of the nonphononic spectrum, and opens the way for related analyses of experimental spectra of glasses.
- C. Kittel, Introduction to solid state physics (Wiley, 2005).
- E. Lerner and E. Bouchbinder, Low-energy quasilocalized excitations in structural glasses, J. Chem. Phys. 155, 200901 (2021).
- E. Lerner, Micromechanics of nonlinear plastic modes, Phys. Rev. E 93, 053004 (2016).
- D. Richard, E. Lerner, and E. Bouchbinder, Brittle-to-ductile transitions in glasses: Roles of soft defects and loading geometry, MRS Bulletin 46, 902 (2021a).
- E. Lerner, G. Düring, and E. Bouchbinder, Statistics and properties of low-frequency vibrational modes in structural glasses, Phys. Rev. Lett. 117, 035501 (2016).
- H. Mizuno, H. Shiba, and A. Ikeda, Continuum limit of the vibrational properties of amorphous solids, Proc. Natl. Acad. Sci. U.S.A. 114, E9767 (2017).
- E. Lerner and E. Bouchbinder, Disordered crystals reveal soft quasilocalized glassy excitations, Phys. Rev. Lett. 129, 095501 (2022a).
- T. Pettinari, G. Düring, and E. Lerner, Elasticity of self-organized frustrated disordered spring networks, arXiv preprint arXiv:2401.11996 (2024).
- E. Lerner and E. Bouchbinder, Nonphononic spectrum of two-dimensional structural glasses, J. Chem. Phys. 157, 166101 (2022b).
- K. Shiraishi, H. Mizuno, and A. Ikeda, Non-phononic density of states of two-dimensional glasses revealed by random pinning, J. Chem. Phys. 158, 174502 (2023).
- C. Rainone, E. Bouchbinder, and E. Lerner, Pinching a glass reveals key properties of its soft spots, Proc. Natl. Acad. Sci. U.S.A. 117, 5228 (2020).
- E. Lerner and E. Bouchbinder, Boson-peak vibrational modes in glasses feature hybridized phononic and quasilocalized excitations, J. Chem. Phys. 158, 194503 (2023).
- E. Bouchbinder and E. Lerner, Universal disorder-induced broadening of phonon bands: from disordered lattices to glasses, New J. Phys. 20, 073022 (2018).
- QLEs can assume the form of non-hybridized harmonic vibrational modes only at frequencies ω<ω†(L)∼L−2¯d+2𝜔subscript𝜔†𝐿similar-tosuperscript𝐿2¯𝑑2\omega\!<\!\omega_{\dagger}(L)\!\sim\!L^{-\frac{2}{{\,\mathchar 22\relax\mkern% -12.0mud}+2}}italic_ω < italic_ω start_POSTSUBSCRIPT † end_POSTSUBSCRIPT ( italic_L ) ∼ italic_L start_POSTSUPERSCRIPT - divide start_ARG 2 end_ARG start_ARG ¯ italic_d + 2 end_ARG end_POSTSUPERSCRIPT, in ¯d¯𝑑{\,\mathchar 22\relax\mkern-12.0mud}¯ italic_d spatial dimensions [21].
- E. Lerner, Finite-size effects in the nonphononic density of states in computer glasses, Phys. Rev. E 101, 032120 (2020).
- L. Gartner and E. Lerner, Nonlinear modes disentangle glassy and Goldstone modes in structural glasses, SciPost Phys. 1, 016 (2016).
- S. Wijtmans and M. L. Manning, Disentangling defects and sound modes in disordered solids, Soft Matter 13, 5649 (2017).
- G. Kapteijns, D. Richard, and E. Lerner, Nonlinear quasilocalized excitations in glasses: True representatives of soft spots, Phys. Rev. E 101, 032130 (2020).
- D. Richard, G. Kapteijns, and E. Lerner, Detecting low-energy quasilocalized excitations in computer glasses, Phys. Rev. E 108, 044124 (2023).
- E. Lerner and E. Bouchbinder, A characteristic energy scale in glasses, J. Chem. Phys. 148, 214502 (2018).
- A. Moriel, E. Lerner, and E. Bouchbinder, Boson peak in the vibrational spectra of glasses, Phys. Rev. Res. 6, 023053 (2024).
- S. Yannopoulos, K. Andrikopoulos, and G. Ruocco, On the analysis of the vibrational boson peak and low-energy excitations in glasses, J. Non-Cryst. Solids 352, 4541 (2006).
- W. Schirmacher, G. Ruocco, and T. Scopigno, Acoustic attenuation in glasses and its relation with the boson peak, Phys. Rev. Lett. 98, 025501 (2007).
- L. Wang, G. Szamel, and E. Flenner, Low-frequency excess vibrational modes in two-dimensional glasses, Phys. Rev. Lett. 127, 248001 (2021).
- E. Lerner, Mechanical properties of simple computer glasses, J. Non-Cryst. Solids 522, 119570 (2019).
- R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods, Vol. 6 (Siam, 1998).
- L. D. Landau and E. M. Lifshitz, Theory of elasticity (Butterworth-Heinemann, London, 1995).
- A. Ninarello, L. Berthier, and D. Coslovich, Models and algorithms for the next generation of glass transition studies, Phys. Rev. X 7, 021039 (2017).
- A. Moriel, E. Lerner, and E. Bouchbinder, Experimental evidence for the ω4superscript𝜔4\omega^{4}italic_ω start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT tail of the nonphononic spectra of glasses, arXiv preprint arXiv:2404.16996 (2024b).