Papers
Topics
Authors
Recent
Search
2000 character limit reached

Pre-trained Vision-Language Models Learn Discoverable Visual Concepts

Published 19 Apr 2024 in cs.CV, cs.AI, cs.CL, and cs.LG | (2404.12652v2)

Abstract: Do vision-LLMs (VLMs) pre-trained to caption an image of a "durian" learn visual concepts such as "brown" (color) and "spiky" (texture) at the same time? We aim to answer this question as visual concepts learned "for free" would enable wide applications such as neuro-symbolic reasoning or human-interpretable object classification. We assume that the visual concepts, if captured by pre-trained VLMs, can be extracted by their vision-language interface with text-based concept prompts. We observe that recent works prompting VLMs with concepts often differ in their strategies to define and evaluate the visual concepts, leading to conflicting conclusions. We propose a new concept definition strategy based on two observations: First, certain concept prompts include shortcuts that recognize correct concepts for wrong reasons; Second, multimodal information (e.g. visual discriminativeness, and textual knowledge) should be leveraged when selecting the concepts. Our proposed concept discovery and learning (CDL) framework is thus designed to identify a diverse list of generic visual concepts (e.g. "spiky" as opposed to "spiky durian"), which are ranked and selected based on visual and language mutual information. We carefully design quantitative and human evaluations of the discovered concepts on six diverse visual recognition datasets, which confirm that pre-trained VLMs do learn visual concepts that provide accurate and thorough descriptions for the recognized objects. All code and models are publicly released.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (5)

Collections

Sign up for free to add this paper to one or more collections.