Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Increasing Interference Detection in Quantum Cryptography using the Quantum Fourier Transform (2404.12507v2)

Published 18 Apr 2024 in quant-ph and cs.CR

Abstract: Quantum key distribution (QKD) and quantum message encryption protocols promise a secure way to distribute information while detecting eavesdropping. However, current protocols may suffer from significantly reduced eavesdropping protection when only a subset of qubits are observed by an attacker. In this paper, we present two quantum cryptographic protocols leveraging the quantum Fourier transform (QFT) and show their higher effectiveness even when an attacker measures only a subset of the transmitted qubits. The foremost of these protocols is a novel QKD method that leverages this effectiveness of the QFT while being more practical than previously proposed QFT-based protocols, most notably by not relying on quantum memory. We additionally show how existing quantum encryption methods can be augmented with a QFT-based approach to improve eavesdropping detection. Finally, we provide equations to analyze different QFT-based detection schemes within these protocols so that protocol designers can make custom schemes for their purpose.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299, no. 5886, pp. 802–803, Oct. 1982. [Online]. Available: https://doi.org/10.1038/299802a0
  2. W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.
  3. R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, p. 120–126, feb 1978. [Online]. Available: https://doi.org/10.1145/359340.359342
  4. P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124–134.
  5. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theoretical Computer Science, vol. 560, pp. 7–11, 2014.
  6. S. Kak, “A three-stage quantum cryptography protocol,” Foundations of Physics Letters, vol. 19, no. 3, pp. 293–296, 2006.
  7. A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, Aug 1991. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.67.661
  8. Z. Yang, M. Zolanvari, and R. Jain, “A survey of important issues in quantum computing and communications,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 1059–1094, 2023.
  9. M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express, vol. 21, no. 21, pp. 24 550–24 565, Oct 2013.
  10. Y. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, Y. Huang, C. Xu, X. Zhang, Z. Wang, M. Li, X. Zhang, Z. Zheng, B. Chu, X. Gao, N. Meng, W. Cai, Z. Wang, G. Wang, S. Yu, and H. Guo, “Continuous-variable qkd over 50 km commercial fiber,” Quantum Science and Technology, vol. 4, no. 3, p. 035006, May 2019. [Online]. Available: http://dx.doi.org/10.1088/2058-9565/ab19d1
  11. B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nature Photonics, vol. 9, no. 3, p. 163–168, Feb. 2015. [Online]. Available: http://dx.doi.org/10.1038/nphoton.2014.327
  12. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Reviews of modern physics, vol. 81, no. 3, p. 1301, 2009.
  13. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Physical review letters, vol. 85, no. 6, p. 1330, 2000.
  14. W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Physical review letters, vol. 91, no. 5, p. 057901, 2003.
  15. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Physical review letters, vol. 94, no. 23, p. 230504, 2005.
  16. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Physical review letters, vol. 94, no. 23, p. 230503, 2005.
  17. M. Nagy, S. G. Akl, and S. Kershaw, “Key distribution based on quantum fourier transform,” in International Conference on Security and Cryptography, vol. 2.   SCITEPRESS, 2008, pp. 263–269.
  18. X.-Y. Yan, N.-R. Zhou, L.-H. Gong, Y.-Q. Wang, and X.-J. Wen, “High-dimensional quantum key distribution based on qudits transmission with quantum fourier transform,” Quantum Information Processing, vol. 18, no. 9, p. 271, 2019.
  19. X. Tan, S. Cheng, J. Li, and Z. Feng, “Quantum key distribution protocol using quantum fourier transform,” in 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, 2015, pp. 96–101.
  20. “Cwe-330: Use of insufficiently random values,” online; accessed 7-February-2024. [Online]. Available: https://cwe.mitre.org/data/definitions/330.html
  21. “Cwe-338: Use of cryptographically weak pseudo-random number generator (prng),” online; accessed 7-February-2024. [Online]. Available: https://cwe.mitre.org/data/definitions/338.html
  22. C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification by public discussion,” SIAM journal on Computing, vol. 17, no. 2, pp. 210–229, 1988.
  23. M. Mosca and A. Ekert, “The hidden subgroup problem and eigenvalue estimation on a quantum computer,” in Quantum Computing and Quantum Communications, C. P. Williams, Ed.   Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 174–188.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com