Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anti-concentration applied to roots of randomized derivatives of polynomials (2404.12472v3)

Published 18 Apr 2024 in math.PR

Abstract: Let $(Z{(n)}k){1 \leq k \leq n}$ be a random set of points and let $\mu_n$ be its \emph{empirical measure}: $$\mu_n = \frac{1}{n} \sum_{k=1}n \delta_{Z{(n)}_k}. $$ Let $$P_n(z) := (z - Z{(n)}_1)\cdots (z - Z{(n)}_n)\quad \text{and}\quad Q_n (z) := \sum_{k=1}n \gamma{(n)}_k \prod_{1 \leq j \leq n, j \neq k} (z- Z{(n)}_j), $$ where $(\gamma{(n)}k){1 \leq k \leq n}$ are independent, i.i.d. random variables with Gamma distribution of parameter $\beta/2$, for some fixed $\beta > 0$. We prove that in the case where $\mu_n$ almost surely tends to $\mu$ when $n \rightarrow \infty$, the empirical measure of the complex zeros of the \emph{randomized derivative} $Q_n$ also converges almost surely to $\mu$ when $n$ tends to infinity. Furthermore, for $k = o(n / \log n)$, we obtain that the zeros of the $k-$th \emph{randomized derivative} of $P_n$ converge to the limiting measure $\mu$ in the same sense. We also derive the same conclusion for a variant of the randomized derivative related to the unit circle.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. On the dynamics of the roots of polynomials under differentiation. J. Math. Pures Appl., 162:1–22, 2022.
  2. Almost sure behavior of the critical points of random polynomials. Bull. Lond. Math. Soc., 56(2):767–782, 2024.
  3. Zeros of random polynomials and their higher derivatives. Trans. Amer. Math. Soc., 375(9):6311–6335, 2022.
  4. Critical points of random finite blaschke products with independent and identically distributed zeros. Complex Analysis and Potential Theory with Applications, 2014.
  5. Higher-order, polar and Sz.-Nagy’s generalized derivatives of random polynomials with independent and identically distributed zeros on the unit circle. Comput. Methods Funct. Theory, 15(1):159–186, 2015.
  6. A. Galligo. Modeling complex root motion of real random polynomials under differentiation. Proceedings ISSAC 2022 ISSAC 2022 - 47th International Symposium on Symbolic and Algebraic Computation, Jul 2022, Lille, France. arXiv.2205.08747. hal-03577445v2., 2022.
  7. Roots of polynomials under repeated differentiation and repeated applications of fractional differential operators. arXiv preprint arXiv:2312.14883, 2023.
  8. J. Hoskins and Z. Kabluchko. Dynamics of zeroes under repeated differentiation. Exp. Math., pages 1–27, 2021.
  9. J. G. Hoskins and S. Steinerberger. A semicircle law for derivatives of random polynomials. Int. Math. Res. Notices, 2022(13):9784–9809, 2022.
  10. Z. Kabluchko. Critical points of random polynomials with independent identically distributed roots. Proc. Amer. Math. Soc., 143(2):695–702, 2015.
  11. Z. Kabluchko. Repeated differentiation and free unitary Poisson process. arXiv preprint arXiv:2112.14729, 2021.
  12. A. Kiselev and C. Tan. The flow of polynomial roots under differentiation. Ann. PDE, 8(2):1–69, 2022.
  13. M. Michelen and X.-T. Vu. Zeros of a growing number of derivatives of random polynomials with independent roots. arXiv preprint arXiv:2212.11867, 2022.
  14. M. Michelen and X.-T. Vu. Almost sure behavior of the zeros of iterated derivatives of random polynomials. arXiv preprint arXiv:2307.06788, 2023.
  15. J. Najnudel and B. Virág. The bead process for beta ensembles. Probab. Theory Relat. Fields, 179(3):589–647, 2021.
  16. S. O’Rourke and S. Steinerberger. A nonlocal transport equation modeling complex roots of polynomials under differentiation. Proc. Amer. Math. Soc., 149(4):1581–1592, 2021.
  17. R. Pemantle and I. Rivin. The distribution of zeros of the derivative of a random polynomial. In Advances in combinatorics, pages 259–273. Springer, Heidelberg, 2013.
  18. S. Steinerberger. A nonlocal transport equation describing roots of polynomials under differentiation. Proc. Amer. Math. Soc., 147(11):4733–4744, 2019.
  19. S. Steinerberger. Free convolution powers via roots of polynomials. Exp. Math., 32(4):567–572, 2023.
  20. S. D. Subramanian. On the distribution of critical points of a polynomial. Electron. Commun. Probab., 17:no. 37, 9, 2012.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets