Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward a Quantum Information System Cybersecurity Taxonomy and Testbed: Exploiting a Unique Opportunity for Early Impact (2404.12465v1)

Published 18 Apr 2024 in cs.CR

Abstract: Any human-designed system can potentially be exploited in ways that its designers did not envision, and information systems or networks using quantum components do not escape this reality. We are presented with a unique but quickly waning opportunity to bring cybersecurity concerns to the forefront for quantum information systems before they become widely deployed. The resources and knowledge required to do so, however, may not be common in the cybersecurity community. Yet, a nexus exist. Cybersecurity starts with risk, and there are good taxonomies for security vulnerabilities and impacts in classical systems. In this paper, we propose a preliminary taxonomy for quantum cybersecurity vulnerabilities that accounts for the latest advances in quantum information systems, and must evolve to incorporate well-established cybersecurity principles and methodologies. We envision a testbed environment designed and instrumented with the specific purpose of enabling a broad collaborative community of cybersecurity and quantum information system experts to conduct experimental evaluation of software and hardware security including both physical and virtual quantum components. Furthermore, we envision that such a resource may be available as a user facility to the open science research community.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. M. T. Siponen and R. Willison, “A Critical assesment of IS Security Research Between 1990-2004,” ECIS 2007 Proceedings, no. 01, pp. 1551–1559, 2007. [Online]. Available: \urlhttp://openarchive.cbs.dk/handle/10398/6505
  2. F. Schneider, “Blueprint for a Science of Cybersecurity,” The Next Wave, vol. 19, no. 2, pp. 47–57, 2012. [Online]. Available: \urlhttp://ecommons.library.cornell.edu/handle/1813/22943
  3. A. Kott, “Science of Cyber Security as a System of Models and Problems,” arXiv:1512.00407 [cs], Nov. 2015. [Online]. Available: \urlhttp://arxiv.org/abs/1512.00407
  4. H.-C. Chang, “The Synergy of Scientometric Analysis and Knowledge Mapping with Topic Models: Modelling the Development Trajectories of Information Security and Cyber-Security Research,” Journal of Information & Knowledge Management, vol. 15, no. 04, p. 1650044, 2016. [Online]. Available: \urlhttp://www.worldscientific.com/doi/abs/10.1142/S0219649216500441
  5. C. Herley and P. C. Oorschot, “SoK: Science, Security and the Elusive Goal of Security as a Scientific Pursuit,” Proceedings - IEEE Symposium on Security and Privacy, pp. 99–120, 2017.
  6. A. Burton-Jones, B. Butler, S. Scott, and S. X. Xu, “Examining Assumptions: Provocations on the Nature, Impact, and Implications of IS Theory,” Management Information Systems Quarterly, vol. 45, no. 1, pp. 453–498, Mar. 2021. [Online]. Available: \urlhttps://aisel.aisnet.org/misq/vol45/iss1/17
  7. S. S. Gill, A. Kumar, H. Singh, M. Singh, K. Kaur, M. Usman, and R. Buyya, “Quantum computing: A taxonomy, systematic review and future directions,” Software: Practice and Experience, vol. 52, no. 1, pp. 66–114, 2022. [Online]. Available: \urlhttps://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3039
  8. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019. [Online]. Available: \urlhttps://www.nature.com/articles/s41586-019-1666-5
  9. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, Oct. 2018. [Online]. Available: \urlhttps://www.sciencemag.org/lookup/doi/10.1126/science.aam9288
  10. W. Kozlowski, A. Dahlberg, and S. Wehner, “Designing a quantum network protocol,” in Proceedings of the 16th International Conference on emerging Networking EXperiments and Technologies.   Barcelona Spain: ACM, Nov. 2020, pp. 1–16. [Online]. Available: \urlhttps://dl.acm.org/doi/10.1145/3386367.3431293
  11. C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Reviews of Modern Physics, vol. 89, no. 3, Jul. 2017. [Online]. Available: \urlhttps://link.aps.org/doi/10.1103/RevModPhys.89.035002
  12. A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek, M. Pompili, A. Stolk, P. Pawelczak, R. Knegjens, J. de Oliveira Filho, R. Hanson, and S. Wehner, “A link layer protocol for quantum networks,” in Proceedings of the ACM Special Interest Group on Data Communication.   Beijing China: ACM, Aug. 2019, pp. 159–173. [Online]. Available: \urlhttps://dl.acm.org/doi/10.1145/3341302.3342070
  13. “Quantum internet protocol stack: A comprehensive survey.”
  14. Y. Li, S. D. Barrett, T. M. Stace, and S. C. Benjamin, “Long range failure-tolerant entanglement distribution,” New Journal of Physics, vol. 15, no. 2, Feb. 2013. [Online]. Available: \urlhttps://iopscience.iop.org/article/10.1088/1367-2630/15/2/023012
  15. C. Jones, D. Kim, M. T. Rakher, P. G. Kwiat, and T. D. Ladd, “Design and analysis of communication protocols for quantum repeater networks,” New Journal of Physics, vol. 18, no. 8, Aug. 2016. [Online]. Available: \urlhttps://iopscience.iop.org/article/10.1088/1367-2630/18/8/083015
  16. R. Nandal, A. Nandal, K. Joshi, and A. K. Rathee, “A Survey and Comparison of Some of the Most Prominent QKD Protocols,” SSRN Electronic Journal, 2021. [Online]. Available: \urlhttps://www.ssrn.com/abstract=3769123
  17. O. K. Jasim, S. Abbas, E.-S. M. El-Horbaty, and A.-B. M. Salem, “Quantum Key Distribution: Simulation and Characterizations,” Procedia Computer Science, vol. 65, pp. 701–710, 2015. [Online]. Available: \urlhttps://linkinghub.elsevier.com/retrieve/pii/S1877050915028446
  18. R. Majumdar and S. Das, “SOK: An Evaluation of Quantum Authentication Through Systematic Literature Review,” Social Science Research Network, Rochester, NY, SSRN Scholarly Paper 3859056, May 2021. [Online]. Available: \urlhttps://papers.ssrn.com/abstract=3859056
  19. M. Doosti, M. Delavar, E. Kashefi, and M. Arapinis, “A Unified Framework For Quantum Unforgeability,” arXiv:2103.13994 [quant-ph], Mar. 2021. [Online]. Available: \urlhttp://arxiv.org/abs/2103.13994
  20. C. Majenz, C. Schaffner, and M. Tahmasbi, “Limitations on Uncloneable Encryption and Simultaneous One-Way-to-Hiding,” arXiv:2103.14510 [quant-ph], Mar. 2021. [Online]. Available: \urlhttp://arxiv.org/abs/2103.14510
  21. Z. Eldredge, M. Foss-Feig, J. A. Gross, S. L. Rolston, and A. V. Gorshkov, “Optimal and secure measurement protocols for quantum sensor networks,” Physical Review A, vol. 97, no. 4, Apr. 2018. [Online]. Available: \urlhttps://link.aps.org/doi/10.1103/PhysRevA.97.042337
  22. “CAPEC - CAPEC-3000: Domains of Attack (Version 3.7),” 2021. [Online]. Available: \urlhttps://capec.mitre.org/data/definitions/3000.html
  23. “CWE - CWE-1194: Hardware Design (4.8),” 2019. [Online]. Available: \urlhttps://cwe.mitre.org/data/definitions/1194.html
  24. W. Castryck and T. Decru, “An Efficient Key Recovery Attack on Sidh (preliminary Version),” p. 15, 2022.
  25. O. Mutlu, “The RowHammer problem and other issues we may face as memory becomes denser,” in Design, Automation Test in Europe Conference Exhibition (DATE), 2017, Mar. 2017, pp. 172–185.
  26. K. Basu, D. Soni, M. Nabeel, and R. Karri, “NIST Post-Quantum Cryptography- A Hardware Evaluation Study,” Cryptology ePrint Archive, Tech. Rep., 2019.
  27. D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High‐Dimensional Quantum Communication: Benefits, Progress, and Future Challenges,” Advanced Quantum Technologies, vol. 2, no. 12, p. 1900038, Dec. 2019. [Online]. Available: \urlhttps://onlinelibrary.wiley.com/doi/10.1002/qute.201900038
  28. K. Zheng and L. A. Albert, “A Robust Approach for Mitigating Risks in Cyber Supply Chains,” Risk Analysis, vol. 39, no. 9, pp. 2076–2092, 2019. [Online]. Available: \urlhttps://onlinelibrary.wiley.com/doi/abs/10.1111/risa.13269
  29. P. Patil, P. Narayankar, Narayan D.G., and Meena S.M., “A Comprehensive Evaluation of Cryptographic Algorithms: DES, 3DES, AES, RSA and Blowfish,” Procedia Computer Science, vol. 78, pp. 617–624, 2016. [Online]. Available: \urlhttps://linkinghub.elsevier.com/retrieve/pii/S1877050916001101
  30. A. Facon, S. Guilley, M. Lec’Hvien, A. Schaub, and Y. Souissi, “Detecting Cache-Timing Vulnerabilities in Post-Quantum Cryptography Algorithms,” in 2018 IEEE 3rd International Verification and Security Workshop (IVSW), Jul. 2018, pp. 7–12.
  31. M. Curty and H.-K. Lo, “Foiling covert channels and malicious classical post-processing units in quantum key distribution,” npj Quantum Information, vol. 5, no. 1, p. 14, Dec. 2019. [Online]. Available: \urlhttp://www.nature.com/articles/s41534-019-0131-5
  32. T. Satoh, S. Nagayama, S. Suzuki, T. Matsuo, M. Hajdušek, and R. Van Meter, “Attacking the Quantum Internet,” arXiv:2005.04617 [quant-ph], May 2021. [Online]. Available: \urlhttp://arxiv.org/abs/2005.04617
  33. J. Jogenfors, A. M. Elhassan, J. Ahrens, M. Bourennane, and J.-A. Larsson, “Hacking the Bell test using classical light in energy-time entanglement–based quantum key distribution,” Science Advances, vol. 1, no. 11, Dec. 2015. [Online]. Available: \urlhttps://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1500793
  34. H.-K. Lau and A. A. Clerk, “Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing,” Nature Communications, vol. 9, no. 1, p. 4320, Oct. 2018. [Online]. Available: \urlhttps://www.nature.com/articles/s41467-018-06477-7
  35. N. Shettell, E. Kashefi, and D. Markham, “Cryptographic approach to quantum metrology,” Physical Review A, vol. 105, no. 1, p. L010401, Jan. 2022. [Online]. Available: \urlhttps://link.aps.org/doi/10.1103/PhysRevA.105.L010401
  36. N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Risk Analysis of Trojan-Horse Attacks on Practical Quantum Key Distribution Systems,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 3, pp. 168–177, May 2015. [Online]. Available: \urlhttps://ieeexplore.ieee.org/document/6948230
  37. V. Makarov, J.-P. Bourgoin, P. Chaiwongkhot, M. Gagné, T. Jennewein, S. Kaiser, R. Kashyap, M. Legré, C. Minshull, and S. Sajeed, “Creation of backdoors in quantum communications via laser damage,” Physical Review A, vol. 94, no. 3, Sep. 2016. [Online]. Available: \urlhttps://link.aps.org/doi/10.1103/PhysRevA.94.030302
  38. J. Huang, Y. Wang, H. Wang, Z. Li, and J. Huang, “Man-in-the-middle attack on BB84 protocol and its defence,” in 2009 2nd IEEE International Conference on Computer Science and Information Technology.   Beijing, China: IEEE, Aug. 2009, pp. 438–439. [Online]. Available: \urlhttps://ieeexplore.ieee.org/document/5234678/
  39. F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New Journal of Physics, vol. 12, no. 11, p. 113026, Nov. 2010. [Online]. Available: \urlhttps://iopscience.iop.org/article/10.1088/1367-2630/12/11/113026
  40. Y.-Y. Fei, X.-D. Meng, M. Gao, H. Wang, and Z. Ma, “Quantum man-in-the-middle attack on the calibration process of quantum key distribution,” Scientific Reports, vol. 8, no. 1, Dec. 2018. [Online]. Available: \urlhttp://www.nature.com/articles/s41598-018-22700-3
  41. A. Pljonkin, D. Petrov, L. Sabantina, and K. Dakhkilgova, “Nonclassical Attack on a Quantum KeyDistribution System,” Entropy, vol. 23, no. 5, p. 509, Apr. 2021. [Online]. Available: \urlhttp://arxiv.org/abs/2104.13720
  42. C. C. W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Physical Review A, vol. 89, no. 2, Feb. 2014. [Online]. Available: \urlhttps://link.aps.org/doi/10.1103/PhysRevA.89.022307
  43. Z. Ye, D. Pan, Z. Sun, C. Du, L. Yin, and G. Long, “Generic Security Analysis Framework for Quantum Secure Direct Communication,” arXiv:2011.14546 [quant-ph], Dec. 2020. [Online]. Available: \urlhttp://arxiv.org/abs/2011.14546
  44. T. Satoh, S. Nagayama, and R. Van Meter, “The Network Impact of Hijacking a Quantum Repeater,” Quantum Science and Technology, vol. 3, no. 3, Jul. 2018. [Online]. Available: \urlhttp://arxiv.org/abs/1701.04587
  45. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Optics Express, vol. 19, no. 11, May 2011. [Online]. Available: \urlhttps://www.osapublishing.org/oe/abstract.cfm?uri=oe-19-11-10387
  46. C. P. Gonçalves, “Cyberattacks on Quantum Networked Computation and Communications – Hacking the Superdense Coding Protocol on IBM’s Quantum Computers,” arXiv:2105.07187 [quant-ph], May 2021. [Online]. Available: \urlhttp://arxiv.org/abs/2105.07187
  47. S. Deshpande, C. Xu, T. Trochatos, Y. Ding, and J. Szefer, “Towards an Antivirus for Quantum Computers,” arXiv:2203.02649 [cs], Mar. 2022. [Online]. Available: \urlhttp://arxiv.org/abs/2203.02649
  48. M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemporary Physics, vol. 56, no. 2, pp. 172–185, Apr. 2015. [Online]. Available: \urlhttps://doi.org/10.1080/00107514.2014.964942
  49. N. Burkart and M. F. Huber, “A Survey on the Explainability of Supervised Machine Learning,” Journal of Artificial Intelligence Research, vol. 70, pp. 245–317, Jan. 2021. [Online]. Available: \urlhttps://www.jair.org/index.php/jair/article/view/12228
  50. M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li, “Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning,” in 2018 IEEE Symposium on Security and Privacy (SP), May 2018, pp. 19–35.
  51. B. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, and Z. Lin, “When Machine Learning Meets Privacy: A Survey and Outlook,” ACM Computing Surveys, vol. 54, no. 2, pp. 31:1–31:36, Mar. 2021. [Online]. Available: \urlhttps://doi.org/10.1145/3436755
  52. S. Kundu and S. Ghosh, “Security Aspects of Quantum Machine Learning: Opportunities, Threats and Defenses,” arXiv:2204.03625 [quant-ph], Apr. 2022. [Online]. Available: \urlhttp://arxiv.org/abs/2204.03625
  53. X. Wu, B. Zhang, G. Chen, and D. Jin, “A Scalable Quantum Key Distribution Network Testbed Using Parallel Discrete-Event Simulation,” ACM Transactions on Modeling and Computer Simulation, vol. 32, no. 2, pp. 1–22, Apr. 2022. [Online]. Available: \urlhttps://dl.acm.org/doi/10.1145/3490029
  54. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New Journal of Physics, vol. 11, no. 7, Jul. 2009. [Online]. Available: \urlhttps://iopscience.iop.org/article/10.1088/1367-2630/11/7/075001
  55. S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, and Z.-F. Han, “Field and long-term demonstration of a wide area quantum key distribution network,” Optics Express, vol. 22, no. 18, Sep. 2014. [Online]. Available: \urlhttps://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-18-21739
  56. D. Lopez, J. P. Brito, A. Pastor, V. Martin, C. Sánchez, D. Rincon, and V. Lopez, “Madrid Quantum Communication Infrastructure: a testbed for assessing QKD technologies into real production networks,” in Optical Fiber Communication Conference (OFC) 2021 (2021), paper Th2A.4.   Optica Publishing Group, Jun. 2021. [Online]. Available: \urlhttps://opg.optica.org/abstract.cfm?uri=OFC-2021-Th2A.4
  57. QuTech, “QuTech, Eurofiber and Juniper Networks partner to deploy a Quantum testbed in The Netherlands,” \urlhttps://qutech.nl/2022/07/05/qutech-eurofiber-juniper-deploy-quantum-testbed/.
  58. W. Wu, J. Chung, G. Kanter, N. Lauk, R. Valivarthi, R. R. Ceballos, C. Pena, N. Sinclair, J. M. Thomas, E. M. Eastman, S. Xie, R. Kettimuthu, P. Kumar, P. Spentzouris, and M. Spiropulu, “Illinois express quantum network for distributing and controlling entanglement on metro-scale,” in 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS), 2021, pp. 35–42.
  59. J. Chung, E. M. Eastman, G. S. Kanter, K. Kapoor, N. Lauk, C. Peña, R. K. Plunkett, N. Sinclair, J. M. Thomas, R. Valivarthi, S. Xie, R. Kettimuthu, P. Kumar, P. Spentzouris, and M. Spiropulu, “Design and implementation of the illinois express quantum metropolitan area network,” IEEE Transactions on Quantum Engineering, pp. 1–20, 2022.
  60. H.-H. Lu, E. M. Simmerman, P. Lougovski, A. M. Weiner, and J. M. Lukens, “Fully arbitrary control of frequency-bin qubits,” Phys. Rev. Lett., vol. 125, p. 120503, Sep 2020. [Online]. Available: \urlhttps://link.aps.org/doi/10.1103/PhysRevLett.125.120503
  61. D. Earl, K. Karunaratne, J. Schaake, R. Strum, P. Swingle, and R. Wilson, “Architecture of a first-generation commercial quantum network,” 2022.
  62. O. Slattery, X. Tang, L. Ma, T. Gerrits, A. Rahmouni, and S. Bhushan, “The Quantum Communications and Networking Project at the Information Technology Laboratory of NIST,” in 2021 IEEE Conference on Communications and Network Security (CNS), Oct. 2021, pp. 1–6.
  63. S. M. Clark, D. Lobser, M. C. Revelle, C. G. Yale, D. Bossert, A. D. Burch, M. N. Chow, C. W. Hogle, M. Ivory, J. Pehr, B. Salzbrenner, D. Stick, W. Sweatt, J. M. Wilson, E. Winrow, and P. Maunz, “Engineering the Quantum Scientific Computing Open User Testbed,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–32, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com