Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fermionic Quantum Simulation on Andreev Bound State Superlattices (2404.12430v2)

Published 18 Apr 2024 in cond-mat.mes-hall

Abstract: Arrays of superconducting qubits and cavities offer a promising route for realizing highly controllable artificial materials. However, many analog simulations of superconducting circuit hardware have focused on bosonic systems. Fermionic simulations, on the other hand, have largely relied on digital approaches that require non-local qubit couplings, which could limit their scalability. Here, we propose and study an alternative approach for analog fermionic quantum simulation based on arrays of coherently coupled mesoscopic Josephson junctions. These Josephson junction arrays implement an effective superlattice of Andreev bound state "atoms" that can trap individual fermionic quasiparticles and, due to their wavefunction overlap, mediate quasiparticle hoppings. By developing a Wannier function approach, we show that these Andreev bound state arrays form an all-superconducting and circuit QED-compatible platform for emulating lattice models of fermionic quasiparticles that are phase- and gate-programmable. Interestingly, we also find that the junction lattices can undergo a topological transition and host fermionic boundary modes that can be probed by conductance measurements. We hope our results will inspire the realization of artificial and possibly topological materials on Andreev bound state quantum simulators.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. J. Preskill, Quantum 2, 79 (2018).
  2. Google Quantum AI, Nature 614, 676 (2023).
  3. A. A. Houck, H. E. Türeci, and J. Koch, Nature Physics 8, 292 (2012).
  4. G. A. Quantum and collaborators, arXiv preprint 10.48550/arXiv.2010.07965 (2020).
  5. V. Havlíček, M. Troyer, and J. D. Whitfield, Physical Review A 95, 032332 (2017).
  6. C. W. J. Beenakker, Physical review letters 67, 3836 (1991).
  7. J. M. Martinis and K. Osborne, arXiv preprint  (2004).
  8. J. Sauls, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, 20180140 (2018).
  9. V. Kornich and B. Trauzettel, Physical Review Research 4, 033201 (2022).
  10. C.-A. Li, H.-P. Sun, and B. Trauzettel, arXiv preprint arXiv:2307.04789  (2023).
  11. N. M. Chtchelkatchev and Y. V. Nazarov, Physical review letters 90, 226806 (2003).
  12. C. Padurariu and Y. V. Nazarov, Physical Review B 81, 144519 (2010).
  13. S. Park and A. L. Yeyati, Physical Review B 96, 125416 (2017).
  14. C. Schrade and L. Fu, Physical Review Letters 121, 267002 (2018).
  15. C. Schrade and L. Fu, Physical Review Letters 129, 227002 (2022).
  16. C. Schrade, C. M. Marcus, and A. Gyenis, PRX Quantum 3, 030303 (2022).
  17. A. Maiani, M. Kjaergaard, and C. Schrade, PRX Quantum 3, 030329 (2022).
  18. A. Costa, J. Fabian, and D. Kochan, arXiv preprint arXiv:2303.14823  (2023).
  19. M. Davydova, S. Prembabu, and L. Fu, Science advances 8, eabo0309 (2022).
  20. R. S. Souto, M. Leijnse, and C. Schrade, Physical Review Letters 129, 267702 (2022).
  21. V. Kornich, H. S. Barakov, and Y. V. Nazarov, Physical Review Research 1, 033004 (2019).
  22. D. Vanderbilt, Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge University Press, 2018).
  23. Y.-H. Zhang and T. Senthil, Physical Review B 99, 205150 (2019).
  24. E. J. Meier, F. A. An, and B. Gadway, Nature communications 7, 13986 (2016).
Citations (1)

Summary

We haven't generated a summary for this paper yet.