Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Full Shot Predictions for the DIII-D Tokamak via Deep Recurrent Networks (2404.12416v1)

Published 18 Apr 2024 in physics.plasm-ph and cs.LG

Abstract: Although tokamaks are one of the most promising devices for realizing nuclear fusion as an energy source, there are still key obstacles when it comes to understanding the dynamics of the plasma and controlling it. As such, it is crucial that high quality models are developed to assist in overcoming these obstacles. In this work, we take an entirely data driven approach to learn such a model. In particular, we use historical data from the DIII-D tokamak to train a deep recurrent network that is able to predict the full time evolution of plasma discharges (or "shots"). Following this, we investigate how different training and inference procedures affect the quality and calibration of the shot predictions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. D. Humphreys, G. Ambrosino, P. de Vries, F. Felici, S. H. Kim, G. Jackson, A. Kallenbach, E. Kolemen, J. Lister, D. Moreau et al., “Novel aspects of plasma control in iter,” Physics of Plasmas, vol. 22, no. 2, p. 021806, 2015.
  2. J. Abbate, R. Conlin, and E. Kolemen, “Data-driven profile prediction for diii-d,” Nuclear Fusion, vol. 61, no. 4, p. 046027, 2021.
  3. M. Boyer, J. Wai, M. Clement, E. Kolemen, I. Char, Y. Chung, W. Neiswanger, and J. Schneider, “Machine learning for tokamak scenario optimization: combining accelerating physics models and empirical models,” in APS Division of Plasma Physics Meeting Abstracts, vol. 2021, 2021, pp. PP11–164.
  4. J. Seo, Y.-S. Na, B. Kim, C. Lee, M. Park, S. Park, and Y. Lee, “Feedforward beta control in the kstar tokamak by deep reinforcement learning,” Nuclear Fusion, vol. 61, no. 10, p. 106010, 2021.
  5. ——, “Development of an operation trajectory design algorithm for control of multiple 0d parameters using deep reinforcement learning in kstar,” Nuclear Fusion, vol. 62, no. 8, p. 086049, 2022.
  6. I. Char, J. Abbate, L. Bardóczi, M. Boyer, Y. Chung, R. Conlin, K. Erickson, V. Mehta, N. Richner, E. Kolemen et al., “Offline model-based reinforcement learning for tokamak control,” in Learning for Dynamics and Control Conference.   PMLR, 2023, pp. 1357–1372.
  7. J. Seo, S. Kim, A. Jalalvand, R. Conlin, A. Rothstein, J. Abbate, K. Erickson, J. Wai, R. Shousha, and E. Kolemen, “Avoiding fusion plasma tearing instability with deep reinforcement learning,” Nature, vol. 626, no. 8000, pp. 746–751, 2024.
  8. F. Felici, O. Sauter, S. Coda, B. Duval, T. Goodman, J. Moret, J. Paley, T. Team et al., “Real-time physics-model-based simulation of the current density profile in tokamak plasmas,” Nuclear Fusion, vol. 51, no. 8, p. 083052, 2011.
  9. P. Rodriguez-Fernandez, A. Creely, M. Greenwald, D. Brunner, S. Ballinger, C. Chrobak, D. Garnier, R. Granetz, Z. Hartwig, N. Howard et al., “Overview of the sparc physics basis towards the exploration of burning-plasma regimes in high-field, compact tokamaks,” Nuclear Fusion, vol. 62, no. 4, p. 042003, 2022.
  10. F. Felici and O. Sauter, “Non-linear model-based optimization of actuator trajectories for tokamak plasma profile control,” Plasma Physics and Controlled Fusion, vol. 54, no. 2, p. 025002, 2012.
  11. L. Ljung, “Perspectives on system identification,” Annual Reviews in Control, vol. 34, no. 1, pp. 1–12, 2010.
  12. J. Schoukens and L. Ljung, “Nonlinear system identification: A user-oriented road map,” IEEE Control Systems Magazine, vol. 39, no. 6, pp. 28–99, 2019.
  13. R. Wang and R. Yu, “Physics-guided deep learning for dynamical systems: A survey,” arXiv preprint arXiv:2107.01272, 2021.
  14. V. Mehta, I. Char, W. Neiswanger, Y. Chung, A. Nelson, M. Boyer, E. Kolemen, and J. Schneider, “Neural dynamical systems: Balancing structure and flexibility in physical prediction,” in 2021 60th IEEE Conference on Decision and Control (CDC).   IEEE, 2021, pp. 3735–3742.
  15. Y. Yin, V. Le Guen, J. Dona, E. de Bézenac, I. Ayed, N. Thome, and P. Gallinari, “Augmenting physical models with deep networks for complex dynamics forecasting,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2021, no. 12, p. 124012, 2021.
  16. M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine learning of nonlinear partial differential equations,” Journal of Computational Physics, vol. 357, pp. 125–141, 2018.
  17. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational physics, vol. 378, pp. 686–707, 2019.
  18. A. M. Wang, D. T. Garnier, and C. Rea, “Hybridizing physics and neural odes for predicting plasma inductance dynamics in tokamak fusion reactors,” arXiv preprint arXiv:2310.20079, 2023.
  19. Y. Fu, D. Eldon, K. Erickson, K. Kleijwegt, L. Lupin-Jimenez, M. D. Boyer, N. Eidietis, N. Barbour, O. Izacard, and E. Kolemen, “Machine learning control for disruption and tearing mode avoidance,” Physics of Plasmas, vol. 27, no. 2, p. 022501, 2020.
  20. M. S. Parsons, “Interpretation of machine-learning-based disruption models for plasma control,” Plasma Physics and Controlled Fusion, vol. 59, no. 8, p. 085001, 2017.
  21. C. Rea, K. Montes, K. Erickson, R. Granetz, and R. Tinguely, “A real-time machine learning-based disruption predictor in diii-d,” Nuclear Fusion, vol. 59, no. 9, p. 096016, 2019.
  22. M. Boyer, C. Rea, and M. Clement, “Toward active disruption avoidance via real-time estimation of the safe operating region and disruption proximity in tokamaks,” Nuclear Fusion, vol. 62, no. 2, p. 026005, 2021.
  23. K. Olofsson, D. Humphreys, and R. La Haye, “Event hazard function learning and survival analysis for tearing mode onset characterization,” Plasma Physics and Controlled Fusion, vol. 60, no. 8, p. 084002, 2018.
  24. Z. Keith, C. Nagpal, C. Rea, and R. A. Tinguely, “Risk-aware framework development for disruption prediction: Alcator c-mod and diii-d survival analysis,” 2024.
  25. I. Char, Y. Chung, W. Neiswanger, K. Kandasamy, A. O. Nelson, M. Boyer, E. Kolemen, and J. Schneider, “Offline contextual bayesian optimization,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  26. K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of neural machine translation: Encoder-decoder approaches,” arXiv preprint arXiv:1409.1259, 2014.
  27. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  28. D. A. Nix and A. S. Weigend, “Estimating the mean and variance of the target probability distribution,” in Proceedings of 1994 ieee international conference on neural networks (ICNN’94), vol. 1.   IEEE, 1994, pp. 55–60.
  29. B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty estimation using deep ensembles,” Advances in neural information processing systems, vol. 30, 2017.
  30. K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement learning in a handful of trials using probabilistic dynamics models,” Advances in neural information processing systems, vol. 31, 2018.
  31. Y. Chung, I. Char, H. Guo, J. Schneider, and W. Neiswanger, “Uncertainty toolbox: an open-source library for assessing, visualizing, and improving uncertainty quantification,” arXiv preprint arXiv:2109.10254, 2021.
  32. V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for deep learning using calibrated regression,” in International conference on machine learning.   PMLR, 2018, pp. 2796–2804.
  33. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
Citations (2)

Summary

We haven't generated a summary for this paper yet.