Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-lived oscillations of metastable states in neutral atom systems (2404.12371v2)

Published 18 Apr 2024 in quant-ph, cond-mat.quant-gas, cond-mat.stat-mech, hep-th, and physics.atom-ph

Abstract: Metastable states arise in a range of quantum systems and can be observed in various dynamical scenarios, including decay, bubble nucleation, and long-lived oscillations. The phenomenology of metastable states has been examined in quantum many-body systems, notably in 1D ferromagnetic Ising spin systems and superfluids. In this paper, we study long-lived oscillations of metastable and ground states in 1D antiferromagnetic neutral atom chains with long-range Rydberg interactions. We use a staggered local detuning field to achieve confinement. Using theoretical and numerical models, we identify novel spectral signatures of quasiparticle oscillations distinct to antiferromagnetic neutral atom systems and interpret them using a classical energy model of short-range meson repulsion. Finally, we evaluate the experimental accessibility of our proposed setup on current neutral-atom platforms and discuss experimental feasibility and constraints.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. J. Langer, Annals of Physics 41, 108 (1967).
  2. I. M. Lifshitz and Y. Kagan, Soviet Physics JETP 35, 206 (1972).
  3. I. Y. Kobzarev, L. B. Okun, and M. B. Voloshin, Yad. Fiz. 20, 1229 (1974).
  4. M. Stone, Phys. Rev. D 14, 3568 (1976).
  5. M. Stone, Physics Letters B 67, 186 (1977).
  6. S. Coleman, Phys. Rev. D 15, 2929 (1977a).
  7. S. Coleman, Phys. Rev. D 16, 1248 (1977b).
  8. C. G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977).
  9. M. B. Voloshin, Yad. Fiz. 42, 1017 (1985).
  10. S. Coleman and F. De Luccia, Phys. Rev. D 21, 3305 (1980).
  11. A. Mazumdar and G. White, Reports on Progress in Physics 82, 076901 (2019).
  12. S. B. Rutkevich, Phys. Rev. B 60, 14525 (1999).
  13. A. Sinha, T. Chanda, and J. Dziarmaga, Phys. Rev. B 103, L220302 (2021).
  14. A. Browaeys and T. Lahaye, Nature Physics 16, 132 (2020).
  15. M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).
  16. R. Verresen, M. D. Lukin, and A. Vishwanath, Phys. Rev. X 11, 031005 (2021).
  17. S. Ohler, M. Kiefer-Emmanouilidis, and M. Fleischhauer, Phys. Rev. Res. 5, 013157 (2023).
  18. F. M. Surace and A. Lerose, New Journal of Physics 23, 062001 (2021).
  19. B. N. Parlett and C. Reinsch, Numerische Mathematik 13, 293 (1969).
  20. R. James, J. Langou, and B. R. Lowery, On matrix balancing and eigenvector computation (2014), arXiv:1401.5766 [math.NA] .
  21. M. Voloshin, Physics Letters B 599, 129 (2004).
  22. A. J. Daley, Nature Reviews Physics 5, 702 (2023).
  23. Perlmutter. (2023).
  24. Bloqade.jl: Package for the quantum computation and quantum simulation based on the neutral-atom architecture. (2023).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com