Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-free quantification of completeness, uncertainties, and outliers in atomistic machine learning using information theory (2404.12367v2)

Published 18 Apr 2024 in cond-mat.mtrl-sci, cs.LG, and physics.chem-ph

Abstract: An accurate description of information is relevant for a range of problems in atomistic ML, such as crafting training sets, performing uncertainty quantification (UQ), or extracting physical insights from large datasets. However, atomistic ML often relies on unsupervised learning or model predictions to analyze information contents from simulation or training data. Here, we introduce a theoretical framework that provides a rigorous, model-free tool to quantify information contents in atomistic simulations. We demonstrate that the information entropy of a distribution of atom-centered environments explains known heuristics in ML potential developments, from training set sizes to dataset optimality. Using this tool, we propose a model-free UQ method that reliably predicts epistemic uncertainty and detects out-of-distribution samples, including rare events in systems such as nucleation. This method provides a general tool for data-driven atomistic modeling and combines efforts in ML, simulations, and physical explainability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. E. T. Jaynes, Information theory and statistical mechanics, Physical Review 106, 620 (1957).
  2. C. E. Shannon, A mathematical theory of communication, The Bell System Technical Journal 27, 379 (1948).
  3. R. Shwartz-Ziv and N. Tishby, Opening the black box of deep neural networks via information, arXiv:1703.00810  (2017).
  4. M. Karplus and J. N. Kushick, Method for estimating the configurational entropy of macromolecules, Macromolecules 14, 325 (1981).
  5. J. R. Morris and K. M. Ho, Calculating Accurate Free Energies of Solids Directly from Simulations, Physical Review Letters 74, 940 (1995).
  6. C. D. Van Siclen, Information entropy of complex structures, Physical Review E 56, 5211 (1997).
  7. R. L. C. Vink and G. T. Barkema, Configurational Entropy of Network-Forming Materials, Physical Review Letters 89, 076405 (2002).
  8. B. J. Killian, J. Yundenfreund Kravitz, and M. K. Gilson, Extraction of configurational entropy from molecular simulations via an expansion approximation, The Journal of Chemical Physics 127, 024107 (2007).
  9. B. Fultz, Vibrational thermodynamics of materials, Progress in Materials Science 55, 247 (2010).
  10. M. C. Gao and M. Widom, Information Entropy of Liquid Metals, The Journal of Physical Chemistry B 122, 3550 (2018).
  11. N. Mac Fhionnlaoich and S. Guldin, Information Entropy as a Reliable Measure of Nanoparticle Dispersity, Chemistry of Materials 32, 3701 (2020).
  12. C. Sutton and S. V. Levchenko, First-Principles Atomistic Thermodynamics and Configurational Entropy, Frontiers in Chemistry 8 (2020).
  13. Y. Huang and M. Widom, Vibrational Entropy of Crystalline Solids from Covariance of Atomic Displacements, Entropy 24, 618 (2022).
  14. D. C. Wallace, Correlation entropy in a classical liquid, Physics Letters A 122, 418 (1987).
  15. A. Baranyai and D. J. Evans, Direct entropy calculation from computer simulation of liquids, Physical Review A 40, 3817 (1989).
  16. I. Torrens, Interatomic Potentials (Academic Press, New York, 1972).
  17. D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications (Academic Press San Diego, 2002).
  18. J. Behler and M. Parrinello, Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces, Physical Review Letters 98, 146401 (2007).
  19. J. Behler, Constructing high-dimensional neural network potentials: A tutorial review, Int. J. Quantum Chem. 115, 1032 (2015).
  20. T. Mueller, A. Hernandez, and C. Wang, Machine learning for interatomic potential models, The Journal of Chemical Physics 152, 050902 (2020).
  21. S. Manzhos and T. Carrington, Neural Network Potential Energy Surfaces for Small Molecules and Reactions, Chemical Reviews 121, 10187 (2021).
  22. D. Schwalbe-Koda, A. R. Tan, and R. Gómez-Bombarelli, Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks, Nature Communications 12, 5104 (2021).
  23. J. A. Vita and D. Schwalbe-Koda, Data efficiency and extrapolation trends in neural network interatomic potentials, Machine Learning: Science and Technology 4, 035031 (2023).
  24. D. Widdowson and V. Kurlin, Resolving the data ambiguity for periodic crystals, Advances in Neural Information Processing Systems (NeurIPS 2022) 35, 24625 (2022).
  25. M. Karabin and D. Perez, An entropy-maximization approach to automated training set generation for interatomic potentials, The Journal of Chemical Physics 153 (2020).
  26. J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical review B 39, 5566 (1989).
  27. D. Faken and H. Jónsson, Systematic analysis of local atomic structure combined with 3d computer graphics, Computational Materials Science 2, 279 (1994).
  28. A. Stukowski, Structure identification methods for atomistic simulations of crystalline materials, Modelling and Simulation in Materials Science and Engineering 20, 045021 (2012).
  29. D. Turnbull, Formation of Crystal Nuclei in Liquid Metals, Journal of Applied Physics 21, 1022 (2004).
  30. G. Kaptay, A coherent set of model equations for various surface and interface energies in systems with liquid and solid metals and alloys, Advances in Colloid and Interface Science 283, 102212 (2020).
  31. N. Bernstein, G. Csányi, and V. L. Deringer, De novo exploration and self-guided learning of potential-energy surfaces, npj Computational Materials 5, 99 (2019).
  32. C. Chen and S. P. Ong, A universal graph deep learning interatomic potential for the periodic table, Nature Computational Science 2, 718 (2022).
  33. D. Schwalbe-Koda, N. Govindarajan, and J. Varley, Controlling neural network extrapolation enables efficient and comprehensive sampling of coverage effects in catalysis, ChemRxiv 10.26434/chemrxiv-2023-f6l23 (2023b).
  34. J. S. Smith, O. Isayev, and A. E. Roitberg, ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost, Chemical Science 8, 3192 (2017), arXiv:1610.08935 .
  35. A. Glielmo, C. Zeni, and A. De Vita, Efficient nonparametric n-body force fields from machine learning, Physical Review B 97, 184307 (2018).
  36. S. K. Lam, A. Pitrou, and S. Seibert, Numba: A llvm-based python jit compiler, in Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (2015) pp. 1–6.
  37. R. Freitas, M. Asta, and M. De Koning, Nonequilibrium free-energy calculation of solids using lammps, Computational Materials Science 112, 333 (2016).
  38. T. Schneider and E. Stoll, Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions, Physical Review B 17, 1302 (1978).
  39. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of chemical physics 81, 511 (1984).
  40. W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical review A 31, 1695 (1985).
  41. S. J. Reddi, S. Kale, and S. Kumar, On the convergence of adam and beyond, in International Conference on Learning Representations (2018).
  42. M. Chase, NIST-JANAF Thermochemical Tables, 4th Edition (American Institute of Physics, 1998).
  43. W. Dong, C. Moses, and K. Li, Efficient k-nearest neighbor graph construction for generic similarity measures, in Proceedings of the 20th International Conference on World Wide Web (2011) pp. 577–586.
  44. F. A. Lindemann, über die berechnung molekularer eigenfrequenzen, Physikalische Zeitschrift 11, 609 (1910).

Summary

  • The paper demonstrates that information entropy computed from MD simulations can accurately estimate thermodynamic entropy changes in materials systems.
  • It employs a novel non-parametric, model-free approach leveraging kernel density estimation to evaluate uncertainty and detect rare, out-of-equilibrium events.
  • The study enhances data robustness for ML interatomic potentials by quantifying dataset redundancy and guiding efficient data sampling.

Information Theory Bridges Atomistic Machine Learning and Materials Thermodynamics

Overview

In the context of atomistic modeling and materials science, the integration of ML methodologies with classical thermodynamic and statistical mechanics principles provides a fertile ground for advancing predictive capabilities and understanding material behaviors under varied conditions. The paper introduces an information theoretical framework that effectively unifies the predictive modeling of phase transformations, kinetic events, and uncertainty quantification (UQ) in ML-driven simulations. By leveraging molecular dynamics (MD) simulations and non-parametric estimates of information entropy, the paper illuminates the deep connections between information entropy and thermodynamic entropy in atomistic systems.

Key Methodologies and Results

Leveraging Information Entropy for Thermodynamic Predictions

The paper leverages information entropy derived from distributions of atom-centered environments in MD simulations to predict changes in thermodynamic entropy. This approach is validated through comparisons with entropy differences obtained via traditional thermodynamic integration methods, demonstrating that information entropy can closely estimate these changes across various materials systems such as tin and copper under different phase conditions. Notably, the direct computation of information entropy from MD trajectories presents a computationally efficient alternative to rigorous free energy calculations.

Analytical Framework and Computational Methods

The proposed descriptor for representing atomic environments facilitates the non-parametric estimation of information entropy. This representation employs bijective mapping techniques and a concise vector representation derived from interatomic distances and angles. Kernel density estimation (KDE) methods form the crux of calculating the entropy of these distributions, demonstrating scale-appropriate estimations managed via varying kernel bandwidths related to atomic volumes.

Evaluating Rare Events and Out-of-Equilibrium Systems

In kinetic studies, like nucleation processes, the information entropy can act as an insightful "order parameter". The framework aptly handles the non-equilibrium conditions often encountered in material transformations such as nucleation and growth, offering a method to indirectly track these rare events through entropy calculations, aligning well with classical nucleation theory predictions.

Empirical Validation with Machine Learning Interatomic Potentials (MLIPs)

On the front of ML-driven simulations, employing information entropy proves to be powerful in dissecting and understanding the dataset characteristics essential for developing robust MLIPs. Notably, the paper embarks on quantifying the redundancy in datasets and rationalizing the efficiency of data sampling methods, which can significantly influence the training dynamics and performance of MLIPs. Furthermore, through a novel model-free UQ method based on non-parametric statistical treatments of the entropy, the paper introduces reliable detection of extrapolation regimes, transcending common model-dependent UQ approaches.

Practical Implications and Future Directions

Enhancing Data Efficiency and Model Reliability

This integrative information-theoretic approach enables a more nuanced understanding and crafting of atomistic datasets, potentially reducing computational overheads by identifying and trimming redundancy in ML training datasets. The insights into the role of dataset entropy in MLIP efficacy pave the way for more targeted and efficient data-driven modeling strategies.

Broad Applicability and Scalability

The framework's capacity to handle vast atom-centered datasets, scale to systems involving millions of atoms, and provide rigorous yet intuitive metrics for dataset integrity and model uncertainty underscores its adaptability. Future efforts might explore the expansion of this framework beyond crystalline materials to more complex disordered systems or multi-component alloys.

Integration with Existing and Emerging Technologies

While the paper firmly grounds itself in contemporary computational methodologies, its implications beckon integration with emerging quantum computing platforms and advanced statistical learning models. Such future convergences could further revolutionize the speed and accuracy of atomistic simulations and thermodynamic analyses.

Concluding Thoughts

The unification of information theory with atomistic machine learning and materials thermodynamics not only enhances our theoretical understanding but also recalibrates practical approaches to materials modeling. As we advance, the adaptability of this framework to new challenges and its integration with burgeoning computational technologies will likely be key drivers of its long-term relevance and impact in the field.

Github Logo Streamline Icon: https://streamlinehq.com