Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PyTOaCNN: Topology optimization using an adaptive convolutional neural network in Python (2404.12244v1)

Published 18 Apr 2024 in cs.CE

Abstract: This paper introduces an adaptive convolutional neural network (CNN) architecture capable of automating various topology optimization (TO) problems with diverse underlying physics. The proposed architecture has an encoder-decoder-type structure with dense layers added at the bottleneck region to capture complex geometrical features. The network is trained using datasets obtained by the problem-specific open-source TO codes. Tensorflow and Keras are the main libraries employed to develop and to train the model. Effectiveness and robustness of the proposed adaptive CNN model are demonstrated through its performance in compliance minimization problems involving constant and design-dependent loads and in addressing bulk modulus optimization. Once trained, the model takes user's input of the volume fraction as an image and instantly generates an output image of optimized design. The proposed CNN produces high-quality results resembling those obtained via open-source TO codes with negligible performance and volume fraction errors. The paper includes complete associated Python code (Appendix A) for the proposed CNN architecture and explains each part of the code to facilitate reproducibility and ease of learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Khaish Singh Chadha (3 papers)
  2. Prabhat Kumar (46 papers)
Citations (1)