Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasiparticle cooling algorithms for quantum many-body state preparation (2404.12175v2)

Published 18 Apr 2024 in quant-ph, cond-mat.mes-hall, cond-mat.quant-gas, and cond-mat.str-el

Abstract: Probing correlated states of many-body systems is one of the central tasks for quantum simulators and processors. A promising approach to state preparation is to realize desired correlated states as steady states of engineered dissipative evolution. A recent experiment with a Google superconducting quantum processor [X. Mi et al., Science 383, 1332 (2024)] demonstrated a cooling algorithm utilizing auxiliary degrees of freedom that are periodically reset to remove quasiparticles from the system, thereby driving it towards its ground state. In this work, we develop a kinetic theory framework to describe quasiparticle cooling dynamics, and employ it to compare the efficiency of different cooling algorithms. In particular, we introduce a protocol where coupling to auxiliaries is modulated in time to minimize heating processes, and demonstrate that it allows a high-fidelity preparation of ground states in different quantum phases. We verify the validity of the kinetic theory description by an extensive comparison with numerical simulations for the examples of a 1d transverse-field Ising model, the transverse-field Ising model with an additional integrability-breaking field, and a non-integrable antiferromagnetic Heisenberg spin ladder. In all cases we are able to efficiently cool into the many-body ground state. The effects of noise, which limits efficiency of variational quantum algorithms in near-term quantum processors, are investigated through the lens of the kinetic theory: we show how the steady state quasiparticle populations depend on the noise rate, and we establish maximum noise values for achieving high-fidelity ground states. This work establishes quasiparticle cooling algorithms as a practical, robust method for many-body state preparation on near-term quantum processors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. A. Y. Kitaev, Quantum measurements and the abelian stabilizer problem (1995), arXiv:quant-ph/9511026 [quant-ph] .
  2. D. S. Abrams and S. Lloyd, Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors, Phys. Rev. Lett. 83, 5162 (1999).
  3. D. Poulin and P. Wocjan, Preparing ground states of quantum many-body systems on a quantum computer, Phys. Rev. Lett. 102, 130503 (2009).
  4. S. Boixo, E. Knill, and R. D. Somma, Eigenpath traversal by phase randomization, Quantum Inf. Comput. 9, 833 (2009).
  5. Y. Ge, J. Tura, and J. I. Cirac, Faster ground state preparation and high-precision ground energy estimation with fewer qubits, Journal of Mathematical Physics 60, 022202 (2019).
  6. J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2, 79 (2018).
  7. T. Albash and D. A. Lidar, Adiabatic quantum computation, Reviews of Modern Physics 90, 015002 (2018).
  8. T. Louvet, T. Ayral, and X. Waintal, Go-no go criteria for performing quantum chemistry calculations on quantum computers (2023), arXiv:2306.02620 [quant-ph] .
  9. B. M. Terhal and D. P. DiVincenzo, Problem of equilibration and the computation of correlation functions on a quantum computer, Phys. Rev. A 61, 022301 (2000).
  10. E. B. Davies, Markovian master equations, Communications in mathematical Physics 39, 91 (1974).
  11. F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, Quantum computation and quantum-state engineering driven by dissipation, Nat. Phys. 5, 633 (2009).
  12. M. J. Kastoryano and F. G. Brandao, Quantum gibbs samplers: The commuting case, Communications in Mathematical Physics 344, 915 (2016).
  13. S. Polla, Y. Herasymenko, and T. E. O’Brien, Quantum digital cooling, Phys. Rev. A 104, 012414 (2021).
  14. P. Coleman, Introduction to Many-Body Physics (Cambridge University Press, 2015).
  15. E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals of Physics 16, 407 (1961).
  16. S. Sachdev, Quantum phase transitions, Physics world 12, 33 (1999).
  17. H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, USA, 2002).
  18. D. A. Lidar, Lecture notes on the theory of open quantum systems (2020), arXiv:1902.00967 [quant-ph] .
  19. We note that the second assumption is practically necessary, as the diagonal assumption still leaves us with O⁢(e⁢x⁢p(NS))𝑂𝑒𝑥𝑝subscript𝑁𝑆O(\mathop{exp}\nolimits(N_{S}))italic_O ( start_BIGOP italic_e italic_x italic_p end_BIGOP ( italic_N start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ) ) coupled equations to solve.
  20. F. Lange, Z. Lenarčič, and A. Rosch, Time-dependent generalized gibbs ensembles in open quantum systems, Physical Review B 97, 165138 (2018).
  21. A. Lerose, M. Sonner, and D. A. Abanin, Scaling of temporal entanglement in proximity to integrability, Phys. Rev. B 104, 035137 (2021).
  22. M. Žnidarič, Relaxation times of dissipative many-body quantum systems, Physical Review E 92, 042143 (2015).
  23. G. B. Mbeng, A. Russomanno, and G. E. Santoro, The quantum ising chain for beginners (2020), arXiv:2009.09208 [quant-ph] .
  24. F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Matrix product density operators: Simulation of finite-temperature and dissipative systems, Phys. Rev. Lett. 93, 207204 (2004).
  25. M. Zwolak and G. Vidal, Mixed-state dynamics in one-dimensional quantum lattice systems: A time-dependent superoperator renormalization algorithm, Phys. Rev. Lett. 93, 207205 (2004).
  26. G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Physical review letters 91, 147902 (2003).
  27. G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Physical review letters 93, 040502 (2004).
  28. M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor Software Library for Tensor Network Calculations, SciPost Phys. Codebases , 4 (2022).
  29. J. Kempe, A. Kitaev, and O. Regev, The complexity of the local hamiltonian problem, Siam journal on computing 35, 1070 (2006).
  30. S. Bravyi, M. B. Hastings, and F. Verstraete, Lieb-robinson bounds and the generation of correlations and topological quantum order, Physical review letters 97, 050401 (2006).
  31. M. B. Hastings, Topological order at nonzero temperature, Physical review letters 107, 210501 (2011).
  32. C.-F. Chen and F. G. Brandao, Fast thermalization from the eigenstate thermalization hypothesis, arXiv preprint arXiv:2112.07646  (2021).
  33. O. Shtanko and R. Movassagh, Preparing thermal states on noiseless and noisy programmable quantum processors (2023), arXiv:2112.14688 [quant-ph] .
  34. P. Rall, C. Wang, and P. Wocjan, Thermal State Preparation via Rounding Promises, Quantum 7, 1132 (2023).
  35. N. Iorgov, V. Shadura, and Y. Tykhyy, Spin operator matrix elements in the quantum ising chain: fermion approach, Journal of Statistical Mechanics: Theory and Experiment 2011, P02028 (2011).
  36. E. Barouch and B. M. McCoy, Statistical mechanics of the x y model. ii. spin-correlation functions, Physical Review A 3, 786 (1971).
  37. T. Barthel and Y. Zhang, Solving quasi-free and quadratic lindblad master equations for open fermionic and bosonic systems, Journal of Statistical Mechanics: Theory and Experiment 2022, 113101 (2022).
  38. R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Annals of physics 349, 117 (2014).
  39. J. C. Bridgeman and C. T. Chubb, Hand-waving and interpretive dance: an introductory course on tensor networks, Journal of physics A: Mathematical and theoretical 50, 223001 (2017).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com