Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unknown Interference Modeling for Rate Adaptation in Cell-Free Massive MIMO Networks (2404.12148v1)

Published 18 Apr 2024 in eess.SP, cs.IT, and math.IT

Abstract: Co-channel interference poses a challenge in any wireless communication network where the time-frequency resources are reused over different geographical areas. The interference is particularly diverse in cell-free massive multiple-input multiple-output (MIMO) networks, where a large number of user equipments (UEs) are multiplexed by a multitude of access points (APs) on the same time-frequency resources. For realistic and scalable network operation, only the interference from UEs belonging to the same serving cluster of APs can be estimated in real-time and suppressed by precoding/combining. As a result, the unknown interference arising from scheduling variations in neighboring clusters makes the rate adaptation hard and can lead to outages. This paper aims to model the unknown interference power in the uplink of a cell-free massive MIMO network. The results show that the proposed method effectively describes the distribution of the unknown interference power and provides a tool for rate adaptation with guaranteed target outage.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. M. Zaher, E. Björnson, and M. Petrova, “Soft handover procedures in mmwave cell-free massive mimo networks,” IEEE Trans. Wireless Commun., 2023. to appear.
  2. Z. Zhang, Y. Li, R. Wang, Y. Chen, and K. Huang, “Learning-based rate adaptation for uplink massive MIMO with a cooperative data-assisted detector,” in Proc. IEEE GLOBECOM, pp. 1–6, 2019.
  3. Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Foundations of user-centric cell-free massive MIMO,” Foundations and Trends® in Signal Processing, vol. 14, no. 3-4, pp. 162–472, 2021.
  4. G. Interdonato, P. Frenger, and E. G. Larsson, “Scalability aspects of cell-free massive MIMO,” in Proc. IEEE ICC, pp. 1–6, 2019.
  5. M. Zaher, E. Björnson, and M. Petrova, “A bayesian approach to characterize unknown interference power in wireless networks,” IEEE Wireless Commun. Let., vol. 12, no. 8, pp. 1374–1378, 2023.
  6. H. Gao, P. J. Smith, and M. V. Clark, “Theoretical reliability of MMSE linear diversity combining in Rayleigh-fading additive interference channels,” IEEE Trans. Commun., vol. 46, no. 5, pp. 666–672, 1998.
  7. O. B. S. Ali, C. Cardinal, and F. Gagnon, “Performance of optimum combining in a Poisson field of interferers and Rayleigh fading channels,” IEEE Trans. Wire. Commun., vol. 9, no. 8, pp. 2461–2467, 2010.
  8. T. Bai and R. W. Heath, “Analyzing uplink SINR and rate in massive MIMO systems using stochastic geometry,” IEEE Trans. Commun., vol. 64, no. 11, pp. 4592–4606, 2016.
  9. H. Lim and D. Yoon, “On the distribution of SINR for MMSE MIMO systems,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4035–4046, 2019.
  10. P. Li, D. Paul, R. Narasimhan, and J. Cioffi, “On the distribution of SINR for the MMSE MIMO receiver and performance analysis,” IEEE Trans. Info. The., vol. 52, no. 1, pp. 271–286, 2005.
  11. J. Ma, Y. J. Zhang, X. Su, and Y. Yao, “On capacity of wireless ad hoc networks with MIMO MMSE receivers,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5493–5503, 2008.
  12. L. Tan, Z. Zhang, and D. Wang, “Performance of multiuser downlink cell-free massive MIMO systems with hard deadlines,” IEEE Access, vol. 10, pp. 62910–62919, 2022.
  13. S. Kurma, K. Singh, P. K. Sharma, and C.-P. Li, “Outage probability analysis of uplink cell-free massive MIMO with user mobility,” in Proc. IEEE MILCOM, pp. 37–42, 2022.
  14. E. Björnson and L. Sanguinetti, “Making cell-free massive MIMO competitive with MMSE processing and centralized implementation,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 77–90, 2019.
  15. J. Gil-Pelaez, “Note on the inversion theorem,” Biometrika, vol. 38, no. 3-4, pp. 481–482, 1951.
  16. V. Witkovskỳ, “Computing the distribution of a linear combination of inverted gamma variables,” Science Direct Working Paper, no. S1574-0358, p. 04, 2001.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com