Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
25 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
99 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
457 tokens/sec
Kimi K2 via Groq Premium
252 tokens/sec
2000 character limit reached

Revisiting holographic model for thermal and dense QCD with a critical point (2404.12109v1)

Published 18 Apr 2024 in hep-ph and hep-th

Abstract: To quantitatively provide reliable predictions for the hot and dense QCD matter, a holographic model should be adjusted to describe first-principles lattice results available at vanishing baryon chemical potential. The equation of state from two well-known lattice groups, the HotQCD collaboration and the Wuppertal-Budapest (WB) collaboration, shows visible differences at high temperatures. We revisit the Einstein-Maxwell-dilaton (EMD) holographic model for hot QCD with 2+1 flavors and physical quark masses by fitting lattice QCD data from the WB collaboration. Using the parameterization for the scalar potential and gauge coupling proposed in our work [Phys.Rev.D 106 (2022) 12, L121902], the equation of state, the higher order baryon number susceptibilities, and the chiral condensates are in quantitative agreement with state-of-the-art lattice results. We find that the critical endpoint (CEP) obtained from fitting the WB collaboration data is nearly identical to the one from the HotQCD collaboration, suggesting the robustness of the location of the CEP. Moreover, our holographic prediction for the CEP location is in accord with more recent Bayesian analysis on a large number of holographic EMD models and an effective potential approach of QCD from gap equations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, “The QCD equation of state with dynamical quarks,” JHEP 11 (2010) 077, arXiv:1007.2580 [hep-lat].
  2. S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, and K. K. Szabo, “Full result for the QCD equation of state with 2+1 flavors,” Phys. Lett. B 730 (2014) 99–104, arXiv:1309.5258 [hep-lat].
  3. HotQCD Collaboration, A. Bazavov et al., “Equation of state in ( 2+1 )-flavor QCD,” Phys. Rev. D 90 (2014) 094503, arXiv:1407.6387 [hep-lat].
  4. X.-y. Xin, S.-x. Qin, and Y.-x. Liu, “Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach,” Phys. Rev. D 90 no. 7, (2014) 076006, arXiv:2109.09935 [hep-ph].
  5. F. Gao and Y.-x. Liu, “QCD phase transitions via a refined truncation of Dyson-Schwinger equations,” Phys. Rev. D 94 no. 7, (2016) 076009, arXiv:1607.01675 [hep-ph].
  6. S.-x. Qin, L. Chang, H. Chen, Y.-x. Liu, and C. D. Roberts, “Phase diagram and critical endpoint for strongly-interacting quarks,” Phys. Rev. Lett. 106 (2011) 172301, arXiv:1011.2876 [nucl-th].
  7. C. Shi, Y.-L. Wang, Y. Jiang, Z.-F. Cui, and H.-S. Zong, “Locate QCD Critical End Point in a Continuum Model Study,” JHEP 07 (2014) 014, arXiv:1403.3797 [hep-ph].
  8. C. S. Fischer, J. Luecker, and C. A. Welzbacher, “Phase structure of three and four flavor QCD,” Phys. Rev. D 90 no. 3, (2014) 034022, arXiv:1405.4762 [hep-ph].
  9. F. Gao and J. M. Pawlowski, “QCD phase structure from functional methods,” Phys. Rev. D 102 no. 3, (2020) 034027, arXiv:2002.07500 [hep-ph].
  10. M. Asakawa and K. Yazaki, “Chiral Restoration at Finite Density and Temperature,” Nucl. Phys. A 504 (1989) 668–684.
  11. T. M. Schwarz, S. P. Klevansky, and G. Papp, “The Phase diagram and bulk thermodynamical quantities in the NJL model at finite temperature and density,” Phys. Rev. C 60 (1999) 055205, arXiv:nucl-th/9903048.
  12. Z. Li, K. Xu, X. Wang, and M. Huang, “The kurtosis of net baryon number fluctuations from a realistic Polyakov–Nambu–Jona-Lasinio model along the experimental freeze-out line,” Eur. Phys. J. C 79 no. 3, (2019) 245, arXiv:1801.09215 [hep-ph].
  13. P. Zhuang, M. Huang, and Z. Yang, “Density effect on hadronization of a quark plasma,” Phys. Rev. C 62 (2000) 054901, arXiv:nucl-th/0008043.
  14. W.-j. Fu, J. M. Pawlowski, and F. Rennecke, “QCD phase structure at finite temperature and density,” Phys. Rev. D 101 no. 5, (2020) 054032, arXiv:1909.02991 [hep-ph].
  15. H. Zhang, D. Hou, T. Kojo, and B. Qin, “Functional renormalization group study of the quark-meson model with ω𝜔\omegaitalic_ω meson,” Phys. Rev. D 96 no. 11, (2017) 114029, arXiv:1709.05654 [hep-ph].
  16. W.-j. Fu, X. Luo, J. M. Pawlowski, F. Rennecke, R. Wen, and S. Yin, “Hyper-order baryon number fluctuations at finite temperature and density,” Phys. Rev. D 104 no. 9, (2021) 094047, arXiv:2101.06035 [hep-ph].
  17. V. Vovchenko, J. Steinheimer, O. Philipsen, and H. Stoecker, “Cluster Expansion Model for QCD Baryon Number Fluctuations: No Phase Transition at μB/T<πsubscript𝜇𝐵𝑇𝜋\mu_{B}/T<\piitalic_μ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT / italic_T < italic_π,” Phys. Rev. D 97 no. 11, (2018) 114030, arXiv:1711.01261 [hep-ph].
  18. S. Borsanyi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, P. Parotto, A. Pasztor, C. Ratti, and K. K. Szabo, “QCD Crossover at Finite Chemical Potential from Lattice Simulations,” Phys. Rev. Lett. 125 no. 5, (2020) 052001, arXiv:2002.02821 [hep-lat].
  19. A. Bazavov et al., “Skewness, kurtosis, and the fifth and sixth order cumulants of net baryon-number distributions from lattice QCD confront high-statistics STAR data,” Phys. Rev. D 101 no. 7, (2020) 074502, arXiv:2001.08530 [hep-lat].
  20. S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, P. Parotto, A. Pásztor, C. Ratti, and K. K. Szabó, “Lattice QCD equation of state at finite chemical potential from an alternative expansion scheme,” Phys. Rev. Lett. 126 no. 23, (2021) 232001, arXiv:2102.06660 [hep-lat].
  21. D. Bollweg, D. A. Clarke, J. Goswami, O. Kaczmarek, F. Karsch, S. Mukherjee, P. Petreczky, C. Schmidt, and S. Sharma, “Equation of state and speed of sound of (2+1)-flavor QCD in strangeness-neutral matter at non-vanishing net baryon-number density,” arXiv:2212.09043 [hep-lat].
  22. O. Philipsen, “Lattice Constraints on the QCD Chiral Phase Transition at Finite Temperature and Baryon Density,” Symmetry 13 no. 11, (2021) 2079, arXiv:2111.03590 [hep-lat].
  23. O. DeWolfe, S. S. Gubser, and C. Rosen, “A holographic critical point,” Phys. Rev. D 83 (2011) 086005, arXiv:1012.1864 [hep-th].
  24. O. DeWolfe, S. S. Gubser, and C. Rosen, “Dynamic critical phenomena at a holographic critical point,” Phys. Rev. D 84 (2011) 126014, arXiv:1108.2029 [hep-th].
  25. Y. Chen, D. Li, and M. Huang, “The dynamical holographic QCD method for hadron physics and QCD matter,” Commun. Theor. Phys. 74 no. 9, (2022) 097201, arXiv:2206.00917 [hep-ph].
  26. R. Rougemont, J. Grefa, M. Hippert, J. Noronha, J. Noronha-Hostler, I. Portillo, and C. Ratti, “Hot QCD Phase Diagram From Holographic Einstein-Maxwell-Dilaton Models,” arXiv:2307.03885 [nucl-th].
  27. M. Jarvinen, “Holographic dense QCD in the Veneziano limit,” EPJ Web Conf. 274 (2022) 08006, arXiv:2211.10005 [hep-ph].
  28. J. Knaute, R. Yaresko, and B. Kämpfer, “Holographic QCD phase diagram with critical point from Einstein–Maxwell-dilaton dynamics,” Phys. Lett. B 778 (2018) 419–425, arXiv:1702.06731 [hep-ph].
  29. R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, and R. Rougemont, “Critical point in the phase diagram of primordial quark-gluon matter from black hole physics,” Phys. Rev. D 96 no. 9, (2017) 096026, arXiv:1706.00455 [nucl-th].
  30. R.-G. Cai, S. He, L. Li, and Y.-X. Wang, “Probing QCD critical point and induced gravitational wave by black hole physics,” Phys. Rev. D 106 no. 12, (2022) L121902, arXiv:2201.02004 [hep-th].
  31. X. Chen and M. Huang, “Machine learning holographic black hole from lattice QCD equation of state,” arXiv:2401.06417 [hep-ph].
  32. X.-Y. Liu, X.-C. Peng, Y.-L. Wu, and Z. Fang, “Holographic study on QCD phase transition and phase diagram with two flavors,” Phys. Rev. D 109 no. 5, (2024) 054032, arXiv:2312.01346 [hep-ph].
  33. Y.-Q. Zhao, S. He, D. Hou, L. Li, and Z. Li, “Phase diagram of holographic thermal dense QCD matter with rotation,” JHEP 04 (2023) 115, arXiv:2212.14662 [hep-ph].
  34. Z. Li, J. Liang, S. He, and L. Li, “Holographic study of higher-order baryon number susceptibilities at finite temperature and density,” Phys. Rev. D 108 no. 4, (2023) 046008, arXiv:2305.13874 [hep-ph].
  35. S. He, L. Li, S. Wang, and S.-J. Wang, “Constraints on holographic QCD phase transitions from PTA observations,” arXiv:2308.07257 [hep-ph].
  36. Y.-Q. Zhao, S. He, D. Hou, L. Li, and Z. Li, “Phase structure and critical phenomena in 2-flavor QCD by holography,” arXiv:2310.13432 [hep-ph].
  37. S. He, L. Li, Z. Li, and S.-J. Wang, “Gravitational waves and primordial black hole productions from gluodynamics by holography,” Sci. China Phys. Mech. Astron. 67 no. 4, (2024) 240411, arXiv:2210.14094 [hep-ph].
  38. S. Borsanyi, Z. Fodor, J. N. Guenther, S. K. Katz, K. K. Szabo, A. Pasztor, I. Portillo, and C. Ratti, “Higher order fluctuations and correlations of conserved charges from lattice QCD,” JHEP 10 (2018) 205, arXiv:1805.04445 [hep-lat].
  39. L. Li, “On Thermodynamics of AdS Black Holes with Scalar Hair,” Phys. Lett. B 815 (2021) 136123, arXiv:2008.05597 [gr-qc].
  40. S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, “Freeze-out parameters: lattice meets experiment,” Phys. Rev. Lett. 111 (2013) 062005, arXiv:1305.5161 [hep-lat].
  41. J. Grefa, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, and R. Rougemont, “Hot and dense quark-gluon plasma thermodynamics from holographic black holes,” Phys. Rev. D 104 no. 3, (2021) 034002, arXiv:2102.12042 [nucl-th].
  42. H.-w. Zheng, Y. Lu, F. Gao, S.-x. Qin, and Y.-x. Liu, “The effective potential of composite operator in the first order region of QCD phase transition,” arXiv:2312.00382 [hep-ph].
  43. M. Hippert, J. Grefa, T. A. Manning, J. Noronha, J. Noronha-Hostler, I. Portillo Vazquez, C. Ratti, R. Rougemont, and M. Trujillo, “Bayesian location of the QCD critical point from a holographic perspective,” arXiv:2309.00579 [nucl-th].
  44. N. Goldenfeld, Lectures on phase transitions and the renormalization group. 1992.
  45. A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, “Linear confinement and AdS/QCD,” Phys. Rev. D 74 (2006) 015005, arXiv:hep-ph/0602229.
  46. Wuppertal-Budapest Collaboration, S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, “Is there still any Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT mystery in lattice QCD? Results with physical masses in the continuum limit III,” JHEP 09 (2010) 073, arXiv:1005.3508 [hep-lat].
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com