Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The port-Hamiltonian structure of continuum mechanics (2404.12078v1)

Published 18 Apr 2024 in math-ph, math.DG, math.DS, and math.MP

Abstract: In this paper we present a novel approach to the geometric formulation of solid and fluid mechanics within the port-Hamiltonian framework, which extends the standard Hamiltonian formulation to non-conservative and open dynamical systems. Leveraging Dirac structures, instead of symplectic or Poisson structures, this formalism allows the incorporation of energy exchange within the spatial domain or through its boundary, which allows for a more comprehensive description of continuum mechanics. Building upon our recent work in describing nonlinear elasticity using exterior calculus and bundle-valued differential forms, this paper focuses on the systematic derivation of port-Hamiltonian models for solid and fluid mechanics in the material, spatial, and convective representations using Hamiltonian reduction theory. This paper also discusses constitutive relations for stress within this framework including hyper-elasticity, for both finite- and infinite-strains, as well as viscous fluid flow governed by the Navier-Stokes equations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. V. I. Arnold, “Sur la topologie des écoulements stationnaires des fluides parfaits,” in Vladimir I. Arnold-Collected Works, pp. 15–18, Springer, 1965.
  2. J. Marsden and A. Weinstein, “Reduction of symplectic manifolds with symmetry,” Reports on mathematical physics, vol. 5, no. 1, pp. 121–130, 1974.
  3. J. C. Simo, J. E. Marsden, and P. S. Krishnaprasad, “The Hamiltonian structure of nonlinear elasticity: The material and convective representations of solids, rods, and plates,” Archive for Rational Mechanics and Analysis, vol. 104, no. 2, pp. 125–183, 1988.
  4. A. J. Van Der Schaft and B. M. Maschke, “Hamiltonian formulation of distributed-parameter systems with boundary energy flow,” Journal of Geometry and physics, vol. 42, no. 1-2, pp. 166–194, 2002.
  5. F. Califano, R. Rashad, F. P. Schuller, and S. Stramigioli, “Geometric and energy-aware decomposition of the Navier–Stokes equations: A port-Hamiltonian approach,” Physics of fluids, vol. 33, no. 4, p. 47114, 2021.
  6. A. Brugnoli, D. Alazard, V. Pommier-Budinger, and D. Matignon, “Port-Hamiltonian flexible multibody dynamics,” Multibody System Dynamics, vol. 51, no. 3, pp. 343–375, 2021.
  7. F. Califano, R. Rashad, F. P. Schuller, and S. Stramigioli, “Energetic decomposition of distributed systems with moving material domains: The port-Hamiltonian model of fluid-structure interaction,” Journal of Geometry and Physics, vol. 175, p. 104477, 5 2022.
  8. F. Califano, R. Rashad, and S. Stramigioli, “A differential geometric description of thermodynamics in continuum mechanics with application to Fourier–Navier–Stokes fluids,” Physics of Fluids, vol. 34, no. 10, p. 107113, 2022.
  9. N. M. T. Vu, L. Lefevre, and B. Maschke, “A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks,” Mathematical and computer modelling of dynamical systems, vol. 22, no. 3, pp. 181–206, 2016.
  10. R. Rashad, A. Brugnoli, F. Califano, E. Luesink, and S. Stramigioli, “Intrinsic Nonlinear Elasticity: An Exterior Calculus Formulation,” Journal of Nonlinear Science, vol. 33, p. 84, 10 2023.
  11. R. Rashad, F. Califano, A. J. van der Schaft, and S. Stramigioli, “Twenty years of distributed port-Hamiltonian systems: a literature review,” IMA Journal of Mathematical Control and Information, vol. 37, pp. 1400–1422, 12 2020.
  12. J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity. 1994.
  13. Z. Fiala, “Geometry of finite deformations and time-incremental analysis,” International Journal of Non-Linear Mechanics, vol. 81, pp. 230–244, 2016.
  14. B. Kolev and R. Desmorat, “Objective rates as covariant derivatives on the manifold of Riemannian metrics,” pp. 1–39, 2021.
  15. Frankel, The geometry of physics. 2019.
  16. E. Kanso, M. Arroyo, Y. Tong, A. Yavari, J. G. Marsden, and M. Desbrun, “On the geometric character of stress in continuum mechanics,” Zeitschrift fur Angewandte Mathematik und Physik, vol. 58, no. 5, pp. 843–856, 2007.
  17. A. D. Gilbert and J. Vanneste, “A Geometric Look at Momentum Flux and Stress in Fluid Mechanics,” Journal of Nonlinear Science, vol. 33, no. 2, 2023.
  18. J. E. Marsden and A. Weinstein, “The Hamiltonian structure of the Maxwell-Vlasov equations,” Physica D: nonlinear phenomena, vol. 4, no. 3, pp. 394–406, 1982.
  19. J. Marsden and A. Weinstein, “Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids,” Physica D: Nonlinear Phenomena, vol. 7, pp. 305–323, 5 1983.
  20. J. E. Marsden, T. Ra\ctiu, and A. Weinstein, “Semidirect products and reduction in mechanics,” Transactions of the american mathematical society, vol. 281, no. 1, pp. 147–177, 1984.
  21. D. D. Holm, J. E. Marsden, and T. S. Ratiu, “The Hamiltonian structure of continuum mechanics in material, inverse material, spatial and convective representations,” 1986.
  22. D. Lewis, J. Marsden, R. Montgomery, and T. Ratiu, “The Hamiltonian structure for dynamic free boundary problems,” Physica D: Nonlinear Phenomena, vol. 18, pp. 391–404, 1 1986.
  23. A. Mazer and T. Ratiu, “Hamiltonian formulation of adiabatic free boundary Euler flows,” Journal of Geometry and Physics, vol. 6, no. 2, pp. 271–291, 1989.
  24. D. D. Holm, J. E. Marsden, and T. S. Ratiu, “The Euler–Poincaré equations and semidirect products with applications to continuum theories,” Advances in Mathematics, vol. 137, no. 1, pp. 1–81, 1998.
  25. F. Gay-Balmaz, J. E. Marsden, and T. S. Ratiu, “Reduced variational formulations in free boundary continuum mechanics,” Journal of Nonlinear Science, vol. 22, no. 4, pp. 463–497, 2012.
  26. R. Rashad, F. Califano, F. P. Schuller, and S. Stramigioli, “Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy,” Journal of Geometry and Physics, vol. 164, p. 104201, 2021.
  27. R. Rashad, F. Califano, F. P. Schuller, and S. Stramigioli, “Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow,” Journal of Geometry and Physics, vol. 164, p. 104199, 2021.
  28. R. Rashad, F. Califano, A. Brugnoli, F. P. Schuller, and S. Stramigioli, “Exterior and vector calculus views of incompressible Navier-Stokes port-Hamiltonian models,” IFAC-PapersOnLine, vol. 54, no. 19, pp. 173–179, 2021.
  29. X. Cheng, J. J. W. der Vegt, Y. Xu, and H. J. Zwart, “Port-Hamiltonian formulations of the incompressible Euler equations with a free surface,” arXiv preprint arXiv:2305.00377, 2023.
  30. M. V. Trivedi, R. N. Banavar, and P. Kotyczka, “Hamiltonian modelling and buckling analysis of a nonlinear flexible beam with actuation at the bottom,” Mathematical and Computer Modelling of Dynamical Systems, vol. 22, no. 5, pp. 475–492, 2016.
  31. A. Brugnoli, D. Alazard, V. Pommier-Budinger, and D. Matignon, “Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates,” Applied Mathematical Modelling, vol. 75, pp. 961–981, 2019.
  32. A. Brugnoli, R. Rashad, F. Califano, S. Stramigioli, and D. Matignon, “Mixed finite elements for port-Hamiltonian models of von Kármán beams,” IFAC-PapersOnLine, vol. 54, no. 19, pp. 186–191, 2021.
  33. A. Macchelli and C. Melchiorri, “Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach,” SIAM Journal on Control and Optimization, vol. 43, pp. 743–767, 1 2004.
  34. Springer Science \& Business Media, 2013.
  35. Oxford University Press, 2009.
  36. D. N. Arnold, Finite element exterior calculus. SIAM, 2018.
  37. K. Modin, M. Perlmutter, S. Marsland, and R. McLachlan, “On Euler–Arnold equations and totally geodesic subgroups,” Journal of Geometry and Physics, vol. 61, pp. 1446–1461, 8 2011.
  38. P. Rougée, “An intrinsic Lagrangian statement of constitutive laws in large strain,” Computers and Structures, vol. 84, no. 17-18, pp. 1125–1133, 2006.
  39. S. Stramigioli, “The Principal Bundle Structure of Continuum Mechanics,” Journal of Geometry and Physics, p. 105172, 2024.
  40. Z. Fiala, “Geometrical setting of solid mechanics,” Annals of Physics, vol. 326, no. 8, pp. 1983–1997, 2011.
  41. P. Neff, I. D. Ghiba, and J. Lankeit, “The Exponentiated Hencky-Logarithmic Strain Energy. Part I: Constitutive Issues and Rank-One Convexity,” Journal of Elasticity, vol. 121, no. 2, pp. 143–234, 2015.
  42. C. Sansour, “On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues,” International Journal of Solids and Structures, vol. 38, no. 50-51, pp. 9221–9232, 2001.
  43. P. Neff, B. Eidel, and R. J. Martin, “Geometry of Logarithmic Strain Measures in Solid Mechanics,” Archive for Rational Mechanics and Analysis, vol. 222, no. 2, pp. 507–572, 2016.
  44. L. Anand, “On H. Hencky’s approximate strain-energy function for moderate deformations,” 1979.
  45. L. Anand, “Moderate deformations in extension-torsion of incompressible isotropic elastic materials,” Journal of the Mechanics and Physics of Solids, vol. 34, no. 3, pp. 293–304, 1986.
  46. C. Truesdell, W. Noll, and A. C. Pipkin, “The Non-Linear Field Theories of Mechanics,” Journal of Applied Mechanics, vol. 33, no. 4, p. 958, 1966.
  47. R. J. Martin, I. Münch, B. Eidel, and P. Neff, “A brief history of logarithmic strain measures in nonlinear elasticity,” Pamm, vol. 18, no. 1, pp. 10–11, 2018.
  48. J. Málek and V. Pruša, “Derivation of equations for continuum mechanics and thermodynamics of fluids,” Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 3–72, 2018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets