Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

S4TP: Social-Suitable and Safety-Sensitive Trajectory Planning for Autonomous Vehicles (2404.11946v1)

Published 18 Apr 2024 in cs.RO and cs.CV

Abstract: In public roads, autonomous vehicles (AVs) face the challenge of frequent interactions with human-driven vehicles (HDVs), which render uncertain driving behavior due to varying social characteristics among humans. To effectively assess the risks prevailing in the vicinity of AVs in social interactive traffic scenarios and achieve safe autonomous driving, this article proposes a social-suitable and safety-sensitive trajectory planning (S4TP) framework. Specifically, S4TP integrates the Social-Aware Trajectory Prediction (SATP) and Social-Aware Driving Risk Field (SADRF) modules. SATP utilizes Transformers to effectively encode the driving scene and incorporates an AV's planned trajectory during the prediction decoding process. SADRF assesses the expected surrounding risk degrees during AVs-HDVs interactions, each with different social characteristics, visualized as two-dimensional heat maps centered on the AV. SADRF models the driving intentions of the surrounding HDVs and predicts trajectories based on the representation of vehicular interactions. S4TP employs an optimization-based approach for motion planning, utilizing the predicted HDVs'trajectories as input. With the integration of SADRF, S4TP executes real-time online optimization of the planned trajectory of AV within lowrisk regions, thus improving the safety and the interpretability of the planned trajectory. We have conducted comprehensive tests of the proposed method using the SMARTS simulator. Experimental results in complex social scenarios, such as unprotected left turn intersections, merging, cruising, and overtaking, validate the superiority of our proposed S4TP in terms of safety and rationality. S4TP achieves a pass rate of 100% across all scenarios, surpassing the current state-of-the-art methods Fanta of 98.25% and Predictive-Decision of 94.75%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. S. Teng, X. Hu, P. Deng, B. Li, Y. Li, Y. Ai, D. Yang, L. Li, X. Zhe, F. Zhu et al., “Motion planning for autonomous driving: The state of the art and future perspectives,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 6, pp. 3692–3711, 2023.
  2. F.-Y. Wang, “New control paradigm for industry 5.0: From big models to foundation control and management,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 8, pp. 1643–1646, 2023.
  3. X. Wang, J. Yang, Y. Wang, Q. Miao, F.-Y. Wang, A. Zhao, J.-L. Deng, L. Li, X. Na, and L. Vlacic, “Steps toward industry 5.0: Building “6s” parallel industries with cyber-physical-social intelligence,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 8, pp. 1692–1703, 2023.
  4. F.-Y. Wang, “Parallel intelligence in metaverses: Welcome to hanoi!” IEEE Intelligent Systems, vol. 37, no. 1, pp. 16–20, 2022.
  5. F.-Y. Wang, R. Qin, X. Wang, and B. Hu, “Metasocieties in metaverse: Metaeconomics and metamanagement for metaenterprises and metacities,” IEEE Transactions on Computational Social Systems, vol. 9, no. 1, pp. 2–7, 2022.
  6. B. Li, Z. Yin, Y. Ouyang, Y. Zhang, X. Zhong, and S. Tang, “Online trajectory replanning for sudden environmental changes during automated parking: A parallel stitching method,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 748–757, 2022.
  7. S. Li, C. Wei, and Y. Wang, “Combining decision making and trajectory planning for lane changing using deep reinforcement learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 16 110–16 136, 2022.
  8. S. Teng, L. Chen, Y. Ai, Y. Zhou, Z. Xuanyuan, and X. Hu, “Hierarchical interpretable imitation learning for end-to-end autonomous driving,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 673–683, 2022.
  9. X. Tang, K. Yang, H. Wang, J. Wu, Y. Qin, W. Yu, and D. Cao, “Prediction-uncertainty-aware decision-making for autonomous vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 4, pp. 849–862, 2022.
  10. X. Wang, K. Tang, X. Dai, J. Xu, J. Xi, R. Ai, Y. Wang, W. Gu, and C. Sun, “Safety-balanced driving-style aware trajectory planning in intersection scenarios with uncertain environment,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 4, pp. 2888–2898, 2023.
  11. Y. Zhang, Q. Xu, J. Wang, K. Wu, Z. Zheng, and K. Lu, “A learning-based discretionary lane-change decision-making model with driving style awareness,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 1, pp. 68–78, 2022.
  12. B. Toghi, R. Valiente, D. Sadigh, R. Pedarsani, and Y. P. Fallah, “Social coordination and altruism in autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 24 791–24 804, 2022.
  13. J. Huang, Y.-L. Tian, and X. Wang, “Deep learning-based multimodal trajectory prediction methods for autonomous driving: state of the art and perspectives,” Chinese Journal of Intelligent Science and Technology, no. 5(2), pp. 180–199, 2023.
  14. Y. Du, F. S. Acerbo, J. Kober, and T. D. Son, “Learning from demonstrations of critical driving behaviours using driver’s risk field,” arXiv preprint arXiv:2210.01747, 2022.
  15. L. Li, W. Zhao, and C. Wang, “Pomdp motion planning algorithm based on multi-modal driving intention,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1777–1786, 2022.
  16. T. Zhang, W. Song, M. Fu, Y. Yang, and M. Wang, “Vehicle motion prediction at intersections based on the turning intention and prior trajectories model,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 10, pp. 1657–1666, 2021.
  17. C. Hubmann, J. Schulz, M. Becker, D. Althoff, and C. Stiller, “Automated driving in uncertain environments: Planning with interaction and uncertain maneuver prediction,” IEEE Transactions on Intelligent Vehicles, vol. 3, no. 1, pp. 5–17, 2018.
  18. Y. Wu, J. Hou, G. Chen, and A. Knoll, “Trajectory prediction based on planning method considering collision risk,” in Proceedings of the 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM).   IEEE, 2020, pp. 466–470.
  19. J. Kim and D. Kum, “Collision risk assessment algorithm via lane-based probabilistic motion prediction of surrounding vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 9, pp. 2965–2976, 2017.
  20. S. Kolekar, J. De Winter, and D. Abbink, “Human-like driving behaviour emerges from a risk-based driver model,” Nature Communications, vol. 11, no. 1, p. 4850, 2020.
  21. M. Geisslinger, F. Poszler, and M. Lienkamp, “An ethical trajectory planning algorithm for autonomous vehicles,” Nature Machine Intelligence, vol. 5, no. 2, pp. 137–144, 2023.
  22. J. J. Gibson and L. E. Crooks, “A theoretical field-analysis of automobile-driving,” The American Journal of Psychology, vol. 51, no. 3, pp. 453–471, 1938.
  23. G. J. Wilde, “The theory of risk homeostasis: Implications for safety and health,” Risk Analysis, vol. 2, no. 4, pp. 209–225, 1982.
  24. R. Fuller, “Towards a general theory of driver behaviour,” Accident Analysis & Prevention, vol. 37, no. 3, pp. 461–472, 2005.
  25. T. Nyberg, C. Pek, L. Dal Col, C. Norén, and J. Tumova, “Risk-aware motion planning for autonomous vehicles with safety specifications,” in Proceedings of the 2021 IEEE Intelligent Vehicles Symposium.   IEEE, 2021, pp. 1016–1023.
  26. L. Zheng, P. Zeng, W. Yang, Y. Li, and Z. Zhan, “Bézier curve-based trajectory planning for autonomous vehicles with collision avoidance,” IET Intelligent Transport Systems, vol. 14, no. 13, pp. 1882–1891, 2020.
  27. X. Ren, T. Yang, L. E. Li, A. Alahi, and Q. Chen, “Safety-aware motion prediction with unseen vehicles for autonomous driving,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 15 731–15 740.
  28. S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A. Mouzakitis, “Deep learning-based vehicle behavior prediction for autonomous driving applications: A review,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 1, pp. 33–47, 2020.
  29. G. Xie, A. Shangguan, R. Fei, W. Ji, W. Ma, and X. Hei, “Motion trajectory prediction based on a cnn-lstm sequential model,” Science China Information Sciences, vol. 63, pp. 1–21, 2020.
  30. R. Fu, Z. Zhang, and L. Li, “Using lstm and gru neural network methods for traffic flow prediction,” in Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC).   IEEE, 2016, pp. 324–328.
  31. X. Li, X. Ying, and M. C. Chuah, “Grip: Graph-based interaction-aware trajectory prediction,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC).   IEEE, 2019, pp. 3960–3966.
  32. H. Yu, H. E. Tseng, and R. Langari, “A human-like game theory-based controller for automatic lane changing,” Transportation Research Part C: Emerging Technologies, vol. 88, pp. 140–158, 2018.
  33. K. Liu, N. Li, H. E. Tseng, I. Kolmanovsky, and A. Girard, “Interaction-aware trajectory prediction and planning for autonomous vehicles in forced merge scenarios,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 1, pp. 474–488, 2022.
  34. K. Messaoud, I. Yahiaoui, A. Verroust-Blondet, and F. Nashashibi, “Attention based vehicle trajectory prediction,” IEEE Transactions on Intelligent Vehicles, vol. 6, no. 1, pp. 175–185, 2020.
  35. K. Zhang, X. Feng, L. Wu, and Z. He, “Trajectory prediction for autonomous driving using spatial-temporal graph attention transformer,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 22 343–22 353, 2022.
  36. Z. Zhu, N. Pivaro, S. Gupta, A. Gupta, and M. Canova, “Safe model-based off-policy reinforcement learning for eco-driving in connected and automated hybrid electric vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 2, pp. 387–398, 2022.
  37. Z. Huang, H. Liu, J. Wu, and C. Lv, “Differentiable integrated motion prediction and planning with learnable cost function for autonomous driving,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, 2023.
  38. D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” in Proceedings of the Neural Information Processing Systems, 1988.
  39. F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observation,” arXiv preprint arXiv:1805.01954, 2018.
  40. J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Proceedings of the Neural Information Processing Systems, 2016.
  41. M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements in deep reinforcement learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.
  42. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  43. T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor,” in Proceedings of the 35th International Conference on Machine Learning, 2018, pp. 1861–1870.
  44. B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 4909–4926, 2021.
  45. D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion planning techniques for automated vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135–1145, 2015.
  46. Z. Huang, H. Liu, J. Wu, W. Huang, and C. Lv, “Learning interaction-aware motion prediction model for decision-making in autonomous driving,” arXiv preprint arXiv:2302.03939, 2023.
  47. Z. Huang, X. Mo, and C. Lv, “Multi-modal motion prediction with transformer-based neural network for autonomous driving,” in Proceedings of the 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 2605–2611.
  48. Y. Tian, J. Wang, Y. Wang, C. Zhao, F. Yao, and X. Wang, “Federated vehicular transformers and their federations: Privacy-preserving computing and cooperation for autonomous driving,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 456–465, 2022.
  49. Z. Wei, H. Zhao, Z. Li, X. Bu, Y. Chen, X. Zhang, Y. Lv, and F.-Y. Wang, “Stgsa: A novel spatial-temporal graph synchronous aggregation model for traffic prediction,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 1, pp. 226–238, 2023.
  50. M. Zhou, J. Luo, J. Villella, Y. Yang, D. Rusu, J. Miao, W. Zhang, M. Alban, I. Fadakar, Z. Chen et al., “Smarts: Scalable multi-agent reinforcement learning training school for autonomous driving,” arXiv preprint arXiv:2010.09776, 2020.
  51. Y. Ma and H. Liang, “A hierarchical framework for solving the driving tasks,” in Proceedings of the 2022 NeurIPS Driving SMARTS Competition, 2022.
  52. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” in Proceedings of the Advances in Neural Information Processing systems, 2019.
  53. L. Chen, Y. Zhang, B. Tian, Y. Ai, D. Cao, and F.-Y. Wang, “Parallel driving OS: A ubiquitous operating system for autonomous driving in cpss,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 4, pp. 886–895, 2022.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com