Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AgentCoord: Visually Exploring Coordination Strategy for LLM-based Multi-Agent Collaboration (2404.11943v1)

Published 18 Apr 2024 in cs.HC

Abstract: The potential of automatic task-solving through LLM-based multi-agent collaboration has recently garnered widespread attention from both the research community and industry. While utilizing natural language to coordinate multiple agents presents a promising avenue for democratizing agent technology for general users, designing coordination strategies remains challenging with existing coordination frameworks. This difficulty stems from the inherent ambiguity of natural language for specifying the collaboration process and the significant cognitive effort required to extract crucial information (e.g. agent relationship, task dependency, result correspondence) from a vast amount of text-form content during exploration. In this work, we present a visual exploration framework to facilitate the design of coordination strategies in multi-agent collaboration. We first establish a structured representation for LLM-based multi-agent coordination strategy to regularize the ambiguity of natural language. Based on this structure, we devise a three-stage generation method that leverages LLMs to convert a user's general goal into an executable initial coordination strategy. Users can further intervene at any stage of the generation process, utilizing LLMs and a set of interactions to explore alternative strategies. Whenever a satisfactory strategy is identified, users can commence the collaboration and examine the visually enhanced execution result. We develop AgentCoord, a prototype interactive system, and conduct a formal user study to demonstrate the feasibility and effectiveness of our approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Assem. NexusGPT Marketplace. https://app.gpt.nexus/App/Marketplace/agents, 2023. Accessed on: Mar 01, 2024.
  2. ChatEval: Towards better llm-based evaluators through multi-agent debate. In The Twelfth International Conference on Learning Representations, 2024. doi: 10 . 48550/arXiv . 2308 . 07201
  3. AutoAgents: A framework for automatic agent generation. CoRR, abs/2309.17288, Sept. 2023. doi: 10 . 48550/arXiv . 2309 . 17288
  4. AgentVerse: Facilitating multi-agent collaboration and exploring emergent behaviors in agents. CoRR, abs/2308.10848, Aug. 2023. doi: 10 . 48550/arXiv . 2308 . 10848
  5. MARG: Multi-agent review generation for scientific papers. CoRR, abs/2401.04259, Jan. 2024. doi: 10 . 48550/arXiv . 2401 . 04259
  6. Improving factuality and reasoning in language models through multiagent debate. CoRR, abs/2305.14325, May 2023. doi: 10 . 48550/arXiv . 2305 . 14325
  7. D. C. Engelbart. Augmenting human intellect: A conceptual framework. Routledge, New York, 1st ed., 2023. doi: 10 . 4324/9781003230762
  8. Xnli: Explaining and diagnosing nli-based visual data analysis. IEEE Transactions on Visualization and Computer Graphics, pp. 1–14, 2023. doi: 10 . 1109/TVCG . 2023 . 3240003
  9. Promptmagician: Interactive prompt engineering for text-to-image creation. IEEE Transactions on Visualization and Computer Graphics, 30(1):295–305, 2023. doi: 10 . 1109/TVCG . 2023 . 3327168
  10. Gravitas. AutoGPT. https://github.com/Significant-Gravitas/AutoGPT, 2023. Accessed on: Mar 01, 2024.
  11. Data Interpreter: An llm agent for data science. CoRR, abs/2402.18679, Feb. 2024. doi: 10 . 48550/arXiv . 2402 . 18679
  12. MetaGpt: Meta programming for multi-agent collaborative framework. In The Twelfth International Conference on Learning Representations, 2024. doi: 10 . 48550/arXiv . 2308 . 00352
  13. Retrieval-augmented generation for knowledge-intensive nlp tasks. In Advances in Neural Information Processing Systems, pp. 9459–9474, 2020. doi: 10 . 48550/arXiv . 2005 . 11401
  14. CAMEL: Communicative agents for “mind” exploration of large language model society. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. doi: 10 . 48550/arXiv . 2303 . 17760
  15. Encouraging divergent thinking in large language models through multi-agent debate. CoRR, abs/2305.19118, May 2023. doi: 10 . 48550/arXiv . 2305 . 19118
  16. AgentSims: An open-source sandbox for large language model evaluation. CoRR, abs/2308.04026, Aug. 2023. doi: 10 . 48550/arXiv . 2308 . 04026
  17. SPROUT: Authoring programming tutorials with interactive visualization of large language model generation process. CoRR, abs/2312.01801, Dec. 2023. doi: 10 . 48550/arXiv . 2312 . 01801
  18. Dynamic llm-agent network: An llm-agent collaboration framework with agent team optimization. CoRR, abs/2310.02170, Oct. 2023. doi: 10 . 48550/arXiv . 2310 . 02170
  19. AgentLens: Visual analysis for agent behaviors in llm-based autonomous systems. CoRR, abs/2402.08995, Feb. 2024. doi: 10 . 48550/arXiv . 2402 . 08995
  20. A synergistic core for human brain evolution and cognition. Nature Neuroscience, 25(6):771–782, May 2022. doi: 10 . 1038/s41593-022-01070-0
  21. J. MouraAbout. CrewAI. https://github.com/joaomdmoura/crewAI, 2023. Accessed on: Mar 01, 2024.
  22. OpenAI. OpenAI GPT Store. https://openai.com/blog/introducing-the-gpt-store, 2023. Accessed on: Mar 01, 2024.
  23. Training language models to follow instructions with human feedback. In Advances in Neural Information Processing Systems, pp. 27730–27744, 2022. doi: 10 . 48550/arXiv . 2203 . 02155
  24. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023. doi: 10 . 1145/3586183 . 3606763
  25. Communicative agents for software development. CoRR, abs/2307.07924, July 2023. doi: 10 . 48550/arXiv . 2307 . 07924
  26. ReWorkd. AgentGPT. https://github.com/reworkd/AgentGPT, 2023. Accessed on: Mar 01, 2024.
  27. In-context impersonation reveals large language models’ strengths and biases. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. doi: 10 . 48550/arXiv . 2305 . 14930
  28. MedAgents: Large language models as collaborators for zero-shot medical reasoning. CoRR, abs/2311.10537, Nov. 2023. doi: 10 . 48550/arXiv . 2311 . 10537
  29. L. Team. Langroid: Harness llms with multi-agent programming. https://github.com/langroid/langroid, 2023. Accessed on: Mar 01, 2024.
  30. S. Team. SuperAGI. https://github.com/TransformerOptimus/SuperAGI, 2023. Accessed on: Mar 01, 2024.
  31. S. Team. SuperAGI Marketplace. https://marketplace.superagi.com/, 2023. Accessed on: Mar 01, 2024.
  32. A survey on large language model based autonomous agents. CoRR, abs/2308.11432, Aug. 2023. doi: 10 . 48550/arXiv . 2308 . 11432
  33. Unleashing the emergent cognitive synergy in large language models: A task-solving agent through multi-persona self-collaboration. CoRR, abs/2307.05300, July 2023. doi: 10 . 48550/arXiv . 2307 . 05300
  34. Finetuned language models are zero-shot learners. In The Tenth International Conference on Learning Representations, 2022. doi: 10 . 48550/arXiv . 2109 . 01652
  35. Insightlens: Discovering and exploring insights from conversational contexts in large-language-model-powered data analysis. arXiv, 2024. doi: 10 . 48550/ARXIV . 2404 . 01644
  36. Anchorage: Visual analysis of satisfaction in customer service videos via anchor events. IEEE Transactions on Visualization and Computer Graphics, 2023. doi: 10 . 48550/ARXIV . 2302 . 06806
  37. Evidence for a collective intelligence factor in the performance of human groups. science, 330(6004):686–688, Sept. 2010. doi: 10 . 1126/science . 1193147
  38. AutoGen: Enabling next-gen llm applications via multi-agent conversation framework. CoRR, abs/2308.08155, Aug. 2023. doi: 10 . 48550/arXiv . 2308 . 08155
  39. An empirical study on challenging math problem solving with gpt-4. CoRR, abs/2306.01337, June 2023. doi: 10 . 48550/arXiv . 2306 . 01337
  40. XAgent Team. XAgent: An autonomous agent for complex task solving. https://github.com/OpenBMB/XAgent, 2023. Accessed on: Mar 01, 2024.
  41. The rise and potential of large language model based agents: A survey. CoRR, abs/2309.07864, Sept. 2023. doi: 10 . 48550/arXiv . 2309 . 07864
  42. ExpertPrompting: Instructing large language models to be distinguished experts. CoRR, abs/2305.14688, May 2023. doi: 10 . 48550/arXiv . 2305 . 14688
  43. Building cooperative embodied agents modularly with large language models. In The Twelfth International Conference on Learning Representations, 2024. doi: 10 . 48550/arXiv . 2307 . 02485
  44. Agents meet OKR: an object and key results driven agent system with hierarchical self-collaboration and self-evaluation. CoRR, abs/2311.16542, Nov. 2023. doi: 10 . 48550/arXiv . 2311 . 16542
  45. Mindstorms in natural language-based societies of mind. CoRR, abs/2305.17066, May 2023. doi: 10 . 48550/arXiv . 2305 . 17066
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Bo Pan (31 papers)
  2. Jiaying Lu (22 papers)
  3. Ke Wang (529 papers)
  4. Li Zheng (23 papers)
  5. Zhen Wen (13 papers)
  6. Yingchaojie Feng (11 papers)
  7. Minfeng Zhu (25 papers)
  8. Wei Chen (1288 papers)
Citations (6)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com