Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Symmetric Regressor for MRI-Based Assessment of Striatal Dopamine Transporter Uptake in Parkinson's Disease With Enhanced Uncertainty Estimation (2404.11929v3)

Published 18 Apr 2024 in eess.IV, cs.AI, and cs.CV

Abstract: Dopamine transporter (DAT) imaging is commonly used for monitoring Parkinson's disease (PD), where striatal DAT uptake amount is computed to assess PD severity. However, DAT imaging has a high cost and the risk of radiance exposure and is not available in general clinics. Recently, MRI patch of the nigral region has been proposed as a safer and easier alternative. This paper proposes a symmetric regressor for predicting the DAT uptake amount from the nigral MRI patch. Acknowledging the symmetry between the right and left nigrae, the proposed regressor incorporates a paired input-output model that simultaneously predicts the DAT uptake amounts for both the right and left striata. Moreover, it employs a symmetric loss that imposes a constraint on the difference between right-to-left predictions, resembling the high correlation in DAT uptake amounts in the two lateral sides. Additionally, we propose a symmetric Monte-Carlo (MC) dropout method for providing a fruitful uncertainty estimate of the DAT uptake prediction, which utilizes the above symmetry. We evaluated the proposed approach on 734 nigral patches, which demonstrated significantly improved performance of the symmetric regressor compared with the standard regressors while giving better explainability and feature representation. The symmetric MC dropout also gave precise uncertainty ranges with a high probability of including the true DAT uptake amounts within the range.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. B. R. Bloem, M. S. Okun, and C. Klein, “Parkinson’s disease,” The Lancet, vol. 397, no. 10291, pp. 2284–2303, 2021.
  2. P. Damier, E. Hirsch, Y. Agid, and A. Graybiel, “The substantia nigra of the human brain: Ii. patterns of loss of dopamine-containing neurons in parkinson’s disease,” Brain, vol. 122, no. 8, pp. 1437–1448, 1999.
  3. Y. Wakabayashi, R. Takahashi, T. Kanda, F. Zeng, M. Nogami, K. Ishii, and T. Murakami, “Semi-quantitative dopamine transporter standardized uptake value in comparison with conventional specific binding ratio in [123i] fp-cit single-photon emission computed tomography (datscan),” Neurological Sciences, vol. 39, pp. 1401–1407, 2018.
  4. S. R. Suwijn, C. J. van Boheemen, R. J. de Haan, G. Tissingh, J. Booij, and R. M. de Bie, “The diagnostic accuracy of dopamine transporter spect imaging to detect nigrostriatal cell loss in patients with parkinson’s disease or clinically uncertain parkinsonism: a systematic review,” EJNMMI research, vol. 5, pp. 1–8, 2015.
  5. Ü. Ö. Akdemir, H. A. T. BORA, and L. Ö. Atay, “Dopamine transporter spect imaging in parkinson’s disease and parkinsoniandisorders,” Turkish Journal of Medical Sciences, vol. 51, no. 2, pp. 400–410, 2021.
  6. P. Mahlknecht, F. Krismer, W. Poewe, and K. Seppi, “Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for parkinson’s disease,” Movement Disorders, vol. 32, no. 4, pp. 619–623, 2017.
  7. S. T. Schwarz, M. Afzal, P. S. Morgan, N. Bajaj, P. A. Gowland, and D. P. Auer, “The ‘swallow tail’appearance of the healthy nigrosome–a new accurate test of parkinson’s disease: a case-control and retrospective cross-sectional mri study at 3t,” PloS one, vol. 9, no. 4, p. e93814, 2014.
  8. Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing model uncertainty in deep learning,” in international conference on machine learning.   PMLR, 2016, pp. 1050–1059.
  9. M. G. Rahman, M. M. Islam, T. Tsujikawa, Y. Kiyono, and H. Okazawa, “Count-based method for specific binding ratio calculation in [i-123] fp-cit spect analysis,” Annals of Nuclear Medicine, vol. 33, pp. 14–21, 2019.
  10. P. H. Kuo, N. Eshghi, S. Tinaz, H. Blumenfeld, E. D. Louis, and G. Zubal, “Optimization of parameters for quantitative analysis of 123i-ioflupane spect images for monitoring progression of parkinson disease,” Journal of nuclear medicine technology, vol. 47, no. 1, pp. 70–74, 2019.
  11. L. Filippi, C. Manni, M. Pierantozzi, L. Brusa, R. Danieli, P. Stanzione, and O. Schillaci, “123i-fp-cit semi-quantitative spect detects preclinical bilateral dopaminergic deficit in early parkinson’s disease with unilateral symptoms,” Nuclear medicine communications, vol. 26, no. 5, pp. 421–426, 2005.
  12. J. Booij, G. Tissingh, G. Boer, J. Speelman, J. Stoof, A. Janssen, E. C. Wolters, and E. Van Royen, “[123i] fp-cit spect shows a pronounced decline of striatal dopamine transporter labelling in early and advanced parkinson’s disease.” Journal of neurology, neurosurgery, and psychiatry, vol. 62, no. 2, p. 133, 1997.
  13. R. Prashanth, S. D. Roy, P. K. Mandal, and S. Ghosh, “Automatic classification and prediction models for early parkinson’s disease diagnosis from spect imaging,” Expert Systems with Applications, vol. 41, no. 7, pp. 3333–3342, 2014.
  14. S. Lehericy, D. E. Vaillancourt, K. Seppi, O. Monchi, I. Rektorova, A. Antonini, M. J. McKeown, M. Masellis, D. Berg, J. B. Rowe et al., “The role of high-field magnetic resonance imaging in parkinsonian disorders: Pushing the boundaries forward,” Movement Disorders, vol. 32, no. 4, pp. 510–525, 2017.
  15. P. Gao, P.-Y. Zhou, G. Li, G.-B. Zhang, P.-Q. Wang, J.-Z. Liu, F. Xu, F. Yang, and X.-X. Wu, “Visualization of nigrosomes-1 in 3t mr susceptibility weighted imaging and its absence in diagnosing parkinson’s disease.” European Review for Medical & Pharmacological Sciences, vol. 19, no. 23, 2015.
  16. E. Reiter, C. Mueller, B. Pinter, F. Krismer, C. Scherfler, R. Esterhammer, C. Kremser, M. Schocke, G. K. Wenning, W. Poewe et al., “Dorsolateral nigral hyperintensity on 3.0 t susceptibility-weighted imaging in neurodegenerative parkinsonism,” Movement Disorders, vol. 30, no. 8, pp. 1068–1076, 2015.
  17. M. Cosottini, D. Frosini, I. Pesaresi, G. Donatelli, P. Cecchi, M. Costagli, L. Biagi, R. Ceravolo, U. Bonuccelli, and M. Tosetti, “Comparison of 3t and 7t susceptibility-weighted angiography of the substantia nigra in diagnosing parkinson disease,” American Journal of Neuroradiology, vol. 36, no. 3, pp. 461–466, 2015.
  18. Y. J. Bae, J.-M. Kim, E. Kim, K. M. Lee, S. Y. Kang, H. S. Park, K. J. Kim, Y. E. Kim, E. S. Oh, J. Y. Yun et al., “Loss of nigral hyperintensity on 3 tesla mri of parkinsonism: comparison with 123i-fp-cit spect,” Movement Disorders, vol. 31, no. 5, pp. 684–692, 2016.
  19. Y. J. Bae, J.-M. Kim, K. J. Kim, E. Kim, H. S. Park, S. Y. Kang, I.-Y. Yoon, J.-Y. Lee, B. Jeon, and S. E. Kim, “Loss of substantia nigra hyperintensity at 3.0-t mr imaging in idiopathic rem sleep behavior disorder: Comparison with 123i-fp-cit spect,” Radiology, vol. 287, no. 1, pp. 285–293, 2018.
  20. S.-M. Gho, C. Liu, W. Li, U. Jang, E. Y. Kim, D. Hwang, and D.-H. Kim, “Susceptibility map-weighted imaging (smwi) for neuroimaging,” Magnetic resonance in medicine, vol. 72, no. 2, pp. 337–346, 2014.
  21. Y. Nam, S.-M. Gho, D.-H. Kim, E. Y. Kim, and J. Lee, “Imaging of nigrosome 1 in substantia nigra at 3t using multiecho susceptibility map-weighted imaging (smwi),” Journal of Magnetic Resonance Imaging, vol. 46, no. 2, pp. 528–536, 2017.
  22. Y. J. Bae, J.-M. Kim, C.-H. Sohn, J.-H. Choi, B. S. Choi, Y. S. Song, Y. Nam, S. J. Cho, B. Jeon, and J. H. Kim, “Imaging the substantia nigra in parkinson disease and other parkinsonian syndromes,” Radiology, vol. 300, no. 2, pp. 260–278, 2021.
  23. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  24. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  25. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017.
  26. H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem, “Classification using deep learning neural networks for brain tumors,” Future Computing and Informatics Journal, vol. 3, no. 1, pp. 68–71, 2018.
  27. S. S. Yadav and S. M. Jadhav, “Deep convolutional neural network based medical image classification for disease diagnosis,” Journal of Big data, vol. 6, no. 1, pp. 1–18, 2019.
  28. H. Aboutalebi, M. Pavlova, M. J. Shafiee, A. Sabri, A. Alaref, and A. Wong, “Covid-net cxr-s: Deep convolutional neural network for severity assessment of covid-19 cases from chest x-ray images,” Diagnostics, vol. 12, no. 1, p. 25, 2021.
  29. J. Zhang, C. Petitjean, P. Lopez, and S. Ainouz, “Direct estimation of fetal head circumference from ultrasound images based on regression cnn,” in Medical Imaging with Deep Learning.   PMLR, 2020, pp. 914–922.
  30. Y. J. Bae, B. S. Choi, J.-M. Kim, W. A. Ai, I. Yun, Y. S. Song, Y. Nam, S. J. Cho, and J. H. Kim, “Deep learning regressor model based on nigrosome mri in parkinson syndrome effectively predicts striatal dopamine transporter-spect uptake,” Neuroradiology, pp. 1–9, 2023.
  31. M. C. Rodriguez-Oroz, M. Rodriguez, C. Leiva, M. Rodriguez-Palmero, J. Nieto, D. Garcia-Garcia, J. Luis Zubieta, C. Cardiel, and J. A. Obeso, “Neuronal activity of the red nucleus in parkinson’s disease,” Movement disorders, vol. 23, no. 6, pp. 908–911, 2008.
  32. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning research, vol. 9, no. 11, 2008.
  33. R. L. Draelos and L. Carin, “Use hirescam instead of grad-cam for faithful explanations of convolutional neural networks,” arXiv preprint arXiv:2011.08891, 2020.
  34. A. F. Psaros, X. Meng, Z. Zou, L. Guo, and G. E. Karniadakis, “Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons,” Journal of Computational Physics, vol. 477, p. 111902, 2023.

Summary

We haven't generated a summary for this paper yet.