Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rendering Participating Media Using Path Graphs (2404.11894v1)

Published 18 Apr 2024 in cs.GR

Abstract: Rendering volumetric scattering media, including clouds, fog, smoke, and other complex materials, is crucial for realism in computer graphics. Traditional path tracing, while unbiased, requires many long path samples to converge in scenes with scattering media, and a lot of work is wasted by paths that make a negligible contribution to the image. Methods to make better use of the information learned during path tracing range from photon mapping to radiance caching, but struggle to support the full range of heterogeneous scattering media. This paper introduces a new volumetric rendering algorithm that extends and adapts the previous \emph{path graph} surface rendering algorithm. Our method leverages the information collected through multiple-scattering transport paths to compute lower-noise estimates, increasing computational efficiency by reducing the required sample count. Our key contributions include an extended path graph for participating media and new aggregation and propagation operators for efficient path reuse in volumes. Compared to previous methods, our approach significantly boosts convergence in scenes with challenging volumetric light transport, including heterogeneous media with high scattering albedos and dense, forward-scattering translucent materials, under complex lighting conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. James Arvo. 1993. Linear Operators and Integral Equations in Global Illumination. In Global Illumination. Vol. 42. Chapter 2, 1–21.
  2. Benedikt Bitterli and Wojciech Jarosz. 2017. Beyond Points and Beams: Higher-Dimensional Photon Samples for Volumetric Light Transport. 36, 4 (July 2017), 1–12. https://doi.org/10/gfznbr
  3. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020). https://doi.org/10/gg8xc7
  4. Path graphs: iterative path space filtering. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 40, 6 (dec 2021). https://doi.org/10.1145/3478513.3480547
  5. Photon surfaces for robust, unbiased volumetric density estimation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 38, 4 (jul 2019). https://doi.org/10.1145/3306346.3323041
  6. Light Transport Simulation with Vertex Connection and Merging. 31, 6 (Nov. 2012), 192:1–192:10. https://doi.org/10/gbb6q7
  7. Importance Caching for Complex Illumination. 31, 2 (June 2012), 701–710. https://doi.org/10/gbbdcc
  8. A Path Space Extension for Robust Light Transport Simulation. 31, 6 (Jan. 2012), 191:1–191:10. https://doi.org/10/gbb6n3
  9. Volume Path Guiding Based on Zero-Variance Random Walk Theory. ACM Trans. Graph. 38, 3, Article 25 (jun 2019), 19 pages. https://doi.org/10.1145/3230635
  10. Deep Real-Time Volumetric Rendering Using Multi-Feature Fusion. In ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA) (SIGGRAPH ’23). Association for Computing Machinery, New York, NY, USA, Article 61, 10 pages. https://doi.org/10.1145/3588432.3591493
  11. Wenzel Jakob. 2013. Mitsuba Renderer. http://www.mitsuba-renderer.org.
  12. The Beam Radiance Estimate for Volumetric Photon Mapping. Technical Report CS2008-0914. University of California, San Diego.
  13. The Beam Radiance Estimate for Volumetric Photon Mapping. 27, 2 (April 2008), 557–566. https://doi.org/10/bjsfsx
  14. Henrik Wann Jensen. 1996. The Photon Map in Global Illumination. Ph.D. Thesis. Technical University of Denmark.
  15. Henrik Wann Jensen and Niels Jørgen Christensen. 1995. Photon Maps in Bidirectional Monte Carlo Ray Tracing of Complex Objects. 19, 2 (March 1995), 215–224. https://doi.org/10/d9xr6q
  16. Henrik Wann Jensen and Per H. Christensen. 1998. Efficient Simulation of Light Transport in Scenes with Participating Media Using Photon Maps, Vol. 32. ACM, 311–320. https://doi.org/10/b64p36
  17. James T. Kajiya and Timothy L. Kay. 1989. Rendering Fur with Three Dimensional Textures. 23, 3 (July 1989), 271–280.
  18. Path Space Filtering (SIGGRAPH ’14). ACM, Article 68, 1 pages. https://doi.org/10/gfz6mr
  19. Practical Global Illumination with Irradiance Caching. https://doi.org/10/bhnsjz
  20. Unifying Points, Beams, and Paths in Volumetric Light Transport Simulation. 33, 4 (July 2014), 103:1–103:13. https://doi.org/10/f6cz72
  21. Eric P. Lafortune and Yves D. Willems. 1993. Bi-Directional Path Tracing, H. P. Santo (Ed.), Vol. 93. Alvor, Portugal, 145–153.
  22. Fast Volume Rendering with Spatiotemporal Reservoir Resampling. ACM Trans. Graph. 40, 6, Article 279 (dec 2021), 18 pages. https://doi.org/10.1145/3478513.3480499
  23. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Thesis. Stanford University, United States – California.
  24. Eric Veach and Leonidas J. Guibas. 1994. Bidirectional Estimators for Light Transport, Georgios Sakas, Peter Shirley, and Stefan Müller (Eds.). 145–167. https://doi.org/10/gfznbh
  25. Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering, Vol. 29. 419–428. https://doi.org/10/d7b6n4
  26. A Ray Tracing Solution for Diffuse Interreflection. 22, 4 (Aug. 1988), 85–92. https://doi.org/10/dk6rt5
  27. Continuous Multiple Importance Sampling. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4, Article 136 (July 2020), 12 pages. https://doi.org/10.1145/3386569.3392436

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets