Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fast Maximum Clique Algorithm Based on Network Decomposition for Large Sparse Networks (2404.11862v2)

Published 18 Apr 2024 in cs.SI, cs.DS, cs.IR, and physics.data-an

Abstract: Finding maximum cliques in large networks is a challenging combinatorial problem with many real-world applications. We present a fast algorithm to achieve the exact solution for the maximum clique problem in large sparse networks based on efficient graph decomposition. A bunch of effective techniques is being used to greatly prune the graph and a novel concept called Complete-Upper-Bound-Induced Subgraph (CUBIS) is proposed to ensure that the structures with the potential to form the maximum clique are retained in the process of graph decomposition. Our algorithm first pre-prunes peripheral nodes, subsequently, one or two small-scale CUBISs are constructed guided by the core number and current maximum clique size. Bron-Kerbosch search is performed on each CUBIS to find the maximum clique. Experiments on 50 empirical networks with a scale of up to 20 million show the CUBIS scales are largely independent of the original network scale. This enables an approximately linear runtime, making our algorithm amenable for large networks. Our work provides a new framework for effectively solving maximum clique problems on massive sparse graphs, which not only makes the graph scale no longer the bottleneck but also shows some light on solving other clique-related problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Tianlong Fan (12 papers)
  2. Wenjun Jiang (17 papers)
  3. Yi-Cheng Zhang (68 papers)
  4. Linyuan Lü (68 papers)

Summary

We haven't generated a summary for this paper yet.