Computer-Aided Diagnosis of Thoracic Diseases in Chest X-rays using hybrid CNN-Transformer Architecture (2404.11843v2)
Abstract: Medical imaging has been used for diagnosis of various conditions, making it one of the most powerful resources for effective patient care. Due to widespread availability, low cost, and low radiation, chest X-ray is one of the most sought after radiology examination for the diagnosis of various thoracic diseases. Due to advancements in medical imaging technologies and increasing patient load, current radiology workflow faces various challenges including increasing backlogs, working long hours, and increase in diagnostic errors. An automated computer-aided diagnosis system that can interpret chest X-rays to augment radiologists by providing actionable insights has potential to provide second opinion to radiologists, highlight relevant regions in the image, in turn expediting clinical workflow, reducing diagnostic errors, and improving patient care. In this study, we applied a novel architecture augmenting the DenseNet121 Convolutional Neural Network (CNN) with multi-head self-attention mechanism using transformer, namely SA-DenseNet121, that can identify multiple thoracic diseases in chest X-rays. We conducted experiments on four of the largest chest X-ray datasets, namely, ChestX-ray14, CheXpert, MIMIC-CXR-JPG, and IU-CXR. Experimental results in terms of area under the receiver operating characteristics (AUC-ROC) shows that augmenting CNN with self-attention has potential in diagnosing different thoracic diseases from chest X-rays. The proposed methodology has the potential to support the reading workflow, improve efficiency, and reduce diagnostic errors.
- Health information science and systems 2, 3–3 (2014). DOI 10.1186/2047-2501-2-3. URL https://doi.org/10.1186/2047-2501-2-3
- Chest 141(2), 545–558 (2012). DOI https://doi.org/10.1378/chest.10-1302. URL https://www.sciencedirect.com/science/article/pii/S0012369212600968
- Journal of the American College of Radiology 7(7), 495–500 (2010). DOI 10.1016/j.jacr.2010.01.018
- CoRR abs/1711.05225 (2017). URL http://arxiv.org/abs/1711.05225
- Journal of the American College of Radiology 13(9), 1139–1144 (2016). DOI 10.1016/j.jacr.2016.03.028. URL https://doi.org/10.1016/j.jacr.2016.03.028
- In: R. Vera-Rodriguez, J. Fierrez, A. Morales (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 757–765. Springer International Publishing, Cham (2019)
- In: 2020 IEEE International Conference on Big Data (Big Data), pp. 3447–3452 (2020). DOI 10.1109/BigData50022.2020.9377793
- Journal of the American Medical Informatics Association 23(2), 304–310 (2015). DOI 10.1093/jamia/ocv080. URL https://doi.org/10.1093/jamia/ocv080
- In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3462–3471 (2017). DOI 10.1109/CVPR.2017.369
- In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 590–597. AAAI Press (2019). DOI 10.1609/aaai.v33i01.3301590. URL https://doi.org/10.1609/aaai.v33i01.3301590
- Journal of Digital Imaging 31(2), 235–244 (2018). DOI 10.1007/s10278-017-0018-y. URL https://doi.org/10.1007/s10278-017-0018-y
- Pattern Recognition 85, 109–119 (2019). DOI https://doi.org/10.1016/j.patcog.2018.07.031. URL https://www.sciencedirect.com/science/article/pii/S0031320318302711
- Computers and Electrical Engineering 78, 388–399 (2019). DOI https://doi.org/10.1016/j.compeleceng.2019.08.004
- IEEE Access 8, 94631–94642 (2020). DOI 10.1109/ACCESS.2020.2995567
- In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 612–615 (2018). DOI 10.1109/EMBC.2018.8512374
- PLOS Medicine 15(11), 1–15 (2018). DOI 10.1371/journal.pmed.1002697. URL https://doi.org/10.1371/journal.pmed.1002697
- In: 2012 International Conference on Computing Sciences, pp. 142–146 (2012). DOI 10.1109/ICCS.2012.43
- In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1209–1214 (2018). DOI 10.1109/BIBM.2018.8621107
- In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, BCB ’18, p. 103–110. Association for Computing Machinery, New York, NY, USA (2018). DOI 10.1145/3233547.3233573. URL https://doi.org/10.1145/3233547.3233573
- In: A. Campilho, F. Karray, B. ter Haar Romeny (eds.) Image Analysis and Recognition, pp. 546–552. Springer International Publishing, Cham (2018)
- In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8290–8299 (2018). DOI 10.1109/CVPR.2018.00865
- In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9049–9058 (2018). DOI 10.1109/CVPR.2018.00943
- IEEE Access 7, 64279–64288 (2019). DOI 10.1109/ACCESS.2019.2916849
- Procedia Computer Science 179, 112–118 (2021). DOI https://doi.org/10.1016/j.procs.2020.12.015. URL https://www.sciencedirect.com/science/article/pii/S187705092032456X. 5th International Conference on Computer Science and Computational Intelligence 2020
- In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–2929 (2016). DOI 10.1109/CVPR.2016.319
- In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017). DOI 10.1109/ICCV.2017.74
- IEEE Journal of Biomedical and Health Informatics 24(2), 475–485 (2020). DOI 10.1109/JBHI.2019.2928369
- MIT Press (2016). http://www.deeplearningbook.org
- npj Digital Medicine 3(1), 70 (2020). DOI 10.1038/s41746-020-0273-z. URL https://doi.org/10.1038/s41746-020-0273-z
- Frontiers in Artificial Intelligence 3, 74 (2020). DOI 10.3389/frai.2020.583427. URL https://www.frontiersin.org/article/10.3389/frai.2020.583427
- Proceedings of the IEEE 86(11), 2278–2324 (1998). DOI 10.1109/5.726791
- Applied Sciences 9(19) (2019). DOI 10.3390/app9194130. URL https://www.mdpi.com/2076-3417/9/19/4130
- In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc. (2017)
- In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3285–3294 (2019)
- In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (eds.) Advances in Neural Information Processing Systems 32, pp. 68–80. Curran Associates, Inc. (2019). URL http://papers.nips.cc/paper/8302-stand-alone-self-attention-in-vision-models.pdf
- In: International Conference on Learning Representations (2020). URL https://openreview.net/forum?id=HJlnC1rKPB
- Radiology 246(3), 697–722 (2008). DOI 10.1148/radiol.2462070712. URL https://doi.org/10.1148/radiol.2462070712. PMID: 18195376
- Scientific Data 6(1), 317 (2019). DOI 10.1038/s41597-019-0322-0. URL https://doi.org/10.1038/s41597-019-0322-0
- Proceedings of the National Academy of Sciences 117(23), 12592–12594 (2020). DOI 10.1073/pnas.1919012117. URL https://www.pnas.org/content/117/23/12592
- In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019)
- In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, p. 265–283. USENIX Association, USA (2016)
- Wes McKinney: Data Structures for Statistical Computing in Python. In: Stéfan van der Walt, Jarrod Millman (eds.) Proceedings of the 9th Python in Science Conference, pp. 56 – 61 (2010). DOI 10.25080/Majora-92bf1922-00a
- Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
- Journal of Machine Learning Research 12, 2825–2830 (2011)
- CoRR abs/1710.10501 (2017). URL http://arxiv.org/abs/1710.10501
- Neurocomputing 437, 186–194 (2021). DOI https://doi.org/10.1016/j.neucom.2020.03.127
- Sonit Singh (9 papers)