Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computer-Aided Diagnosis of Thoracic Diseases in Chest X-rays using hybrid CNN-Transformer Architecture (2404.11843v2)

Published 18 Apr 2024 in eess.IV, cs.CV, and cs.LG

Abstract: Medical imaging has been used for diagnosis of various conditions, making it one of the most powerful resources for effective patient care. Due to widespread availability, low cost, and low radiation, chest X-ray is one of the most sought after radiology examination for the diagnosis of various thoracic diseases. Due to advancements in medical imaging technologies and increasing patient load, current radiology workflow faces various challenges including increasing backlogs, working long hours, and increase in diagnostic errors. An automated computer-aided diagnosis system that can interpret chest X-rays to augment radiologists by providing actionable insights has potential to provide second opinion to radiologists, highlight relevant regions in the image, in turn expediting clinical workflow, reducing diagnostic errors, and improving patient care. In this study, we applied a novel architecture augmenting the DenseNet121 Convolutional Neural Network (CNN) with multi-head self-attention mechanism using transformer, namely SA-DenseNet121, that can identify multiple thoracic diseases in chest X-rays. We conducted experiments on four of the largest chest X-ray datasets, namely, ChestX-ray14, CheXpert, MIMIC-CXR-JPG, and IU-CXR. Experimental results in terms of area under the receiver operating characteristics (AUC-ROC) shows that augmenting CNN with self-attention has potential in diagnosing different thoracic diseases from chest X-rays. The proposed methodology has the potential to support the reading workflow, improve efficiency, and reduce diagnostic errors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. Health information science and systems 2, 3–3 (2014). DOI 10.1186/2047-2501-2-3. URL https://doi.org/10.1186/2047-2501-2-3
  2. Chest 141(2), 545–558 (2012). DOI https://doi.org/10.1378/chest.10-1302. URL https://www.sciencedirect.com/science/article/pii/S0012369212600968
  3. Journal of the American College of Radiology 7(7), 495–500 (2010). DOI 10.1016/j.jacr.2010.01.018
  4. CoRR abs/1711.05225 (2017). URL http://arxiv.org/abs/1711.05225
  5. Journal of the American College of Radiology 13(9), 1139–1144 (2016). DOI 10.1016/j.jacr.2016.03.028. URL https://doi.org/10.1016/j.jacr.2016.03.028
  6. In: R. Vera-Rodriguez, J. Fierrez, A. Morales (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 757–765. Springer International Publishing, Cham (2019)
  7. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 3447–3452 (2020). DOI 10.1109/BigData50022.2020.9377793
  8. Journal of the American Medical Informatics Association 23(2), 304–310 (2015). DOI 10.1093/jamia/ocv080. URL https://doi.org/10.1093/jamia/ocv080
  9. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3462–3471 (2017). DOI 10.1109/CVPR.2017.369
  10. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 590–597. AAAI Press (2019). DOI 10.1609/aaai.v33i01.3301590. URL https://doi.org/10.1609/aaai.v33i01.3301590
  11. Journal of Digital Imaging 31(2), 235–244 (2018). DOI 10.1007/s10278-017-0018-y. URL https://doi.org/10.1007/s10278-017-0018-y
  12. Pattern Recognition 85, 109–119 (2019). DOI https://doi.org/10.1016/j.patcog.2018.07.031. URL https://www.sciencedirect.com/science/article/pii/S0031320318302711
  13. Computers and Electrical Engineering 78, 388–399 (2019). DOI https://doi.org/10.1016/j.compeleceng.2019.08.004
  14. IEEE Access 8, 94631–94642 (2020). DOI 10.1109/ACCESS.2020.2995567
  15. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 612–615 (2018). DOI 10.1109/EMBC.2018.8512374
  16. PLOS Medicine 15(11), 1–15 (2018). DOI 10.1371/journal.pmed.1002697. URL https://doi.org/10.1371/journal.pmed.1002697
  17. In: 2012 International Conference on Computing Sciences, pp. 142–146 (2012). DOI 10.1109/ICCS.2012.43
  18. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1209–1214 (2018). DOI 10.1109/BIBM.2018.8621107
  19. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, BCB ’18, p. 103–110. Association for Computing Machinery, New York, NY, USA (2018). DOI 10.1145/3233547.3233573. URL https://doi.org/10.1145/3233547.3233573
  20. In: A. Campilho, F. Karray, B. ter Haar Romeny (eds.) Image Analysis and Recognition, pp. 546–552. Springer International Publishing, Cham (2018)
  21. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8290–8299 (2018). DOI 10.1109/CVPR.2018.00865
  22. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9049–9058 (2018). DOI 10.1109/CVPR.2018.00943
  23. IEEE Access 7, 64279–64288 (2019). DOI 10.1109/ACCESS.2019.2916849
  24. Procedia Computer Science 179, 112–118 (2021). DOI https://doi.org/10.1016/j.procs.2020.12.015. URL https://www.sciencedirect.com/science/article/pii/S187705092032456X. 5th International Conference on Computer Science and Computational Intelligence 2020
  25. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–2929 (2016). DOI 10.1109/CVPR.2016.319
  26. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017). DOI 10.1109/ICCV.2017.74
  27. IEEE Journal of Biomedical and Health Informatics 24(2), 475–485 (2020). DOI 10.1109/JBHI.2019.2928369
  28. MIT Press (2016). http://www.deeplearningbook.org
  29. npj Digital Medicine 3(1), 70 (2020). DOI 10.1038/s41746-020-0273-z. URL https://doi.org/10.1038/s41746-020-0273-z
  30. Frontiers in Artificial Intelligence 3, 74 (2020). DOI 10.3389/frai.2020.583427. URL https://www.frontiersin.org/article/10.3389/frai.2020.583427
  31. Proceedings of the IEEE 86(11), 2278–2324 (1998). DOI 10.1109/5.726791
  32. Applied Sciences 9(19) (2019). DOI 10.3390/app9194130. URL https://www.mdpi.com/2076-3417/9/19/4130
  33. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc. (2017)
  34. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3285–3294 (2019)
  35. In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (eds.) Advances in Neural Information Processing Systems 32, pp. 68–80. Curran Associates, Inc. (2019). URL http://papers.nips.cc/paper/8302-stand-alone-self-attention-in-vision-models.pdf
  36. In: International Conference on Learning Representations (2020). URL https://openreview.net/forum?id=HJlnC1rKPB
  37. Radiology 246(3), 697–722 (2008). DOI 10.1148/radiol.2462070712. URL https://doi.org/10.1148/radiol.2462070712. PMID: 18195376
  38. Scientific Data 6(1), 317 (2019). DOI 10.1038/s41597-019-0322-0. URL https://doi.org/10.1038/s41597-019-0322-0
  39. Proceedings of the National Academy of Sciences 117(23), 12592–12594 (2020). DOI 10.1073/pnas.1919012117. URL https://www.pnas.org/content/117/23/12592
  40. In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019)
  41. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, p. 265–283. USENIX Association, USA (2016)
  42. Wes McKinney: Data Structures for Statistical Computing in Python. In: Stéfan van der Walt, Jarrod Millman (eds.) Proceedings of the 9th Python in Science Conference, pp. 56 – 61 (2010). DOI 10.25080/Majora-92bf1922-00a
  43. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
  44. Journal of Machine Learning Research 12, 2825–2830 (2011)
  45. CoRR abs/1710.10501 (2017). URL http://arxiv.org/abs/1710.10501
  46. Neurocomputing 437, 186–194 (2021). DOI https://doi.org/10.1016/j.neucom.2020.03.127
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Sonit Singh (9 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.