Mass-Assisted Local Deconfinement in a Confined $\mathbb{Z}_2$ Lattice Gauge Theory (2404.11645v1)
Abstract: Confinement is a prominent phenomenon in condensed matter and high-energy physics that has recently become the focus of quantum-simulation experiments of lattice gauge theories (LGTs). As such, a theoretical understanding of the effect of confinement on LGT dynamics is not only of fundamental importance, but can lend itself to upcoming experiments. Here, we show how confinement in a $\mathbb{Z}_2$ LGT can be \textit{locally} avoided by proximity to a resonance between the fermion mass and the electric field strength. Furthermore, we show that this local deconfinement can become global for certain initial conditions, where information transport occurs over the entire chain. In addition, we show how this can lead to strong quantum many-body scarring starting in different initial states. Our findings provide deeper insights into the nature of confinement in $\mathbb{Z}_2$ LGTs and can be tested on current and near-term quantum devices.
- Kenneth G. Wilson, “Confinement of quarks,” Phys. Rev. D 10, 2445–2459 (1974).
- H.J. Rothe, Lattice Gauge Theories: An Introduction, EBSCO ebook academic collection (World Scientific, 2005).
- M. Dalmonte and S. Montangero, “Lattice gauge theory simulations in the quantum information era,” Contemporary Physics 57, 388–412 (2016).
- Mari Carmen Bañuls, Rainer Blatt, Jacopo Catani, Alessio Celi, Juan Ignacio Cirac, Marcello Dalmonte, Leonardo Fallani, Karl Jansen, Maciej Lewenstein, Simone Montangero, Christine A. Muschik, Benni Reznik, Enrique Rico, Luca Tagliacozzo, Karel Van Acoleyen, Frank Verstraete, Uwe-Jens Wiese, Matthew Wingate, Jakub Zakrzewski, and Peter Zoller, “Simulating lattice gauge theories within quantum technologies,” The European Physical Journal D 74, 165 (2020).
- Erez Zohar, J Ignacio Cirac, and Benni Reznik, “Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices,” Reports on Progress in Physics 79, 014401 (2015).
- Yuri Alexeev, Dave Bacon, Kenneth R. Brown, Robert Calderbank, Lincoln D. Carr, Frederic T. Chong, Brian DeMarco, Dirk Englund, Edward Farhi, Bill Fefferman, Alexey V. Gorshkov, Andrew Houck, Jungsang Kim, Shelby Kimmel, Michael Lange, Seth Lloyd, Mikhail D. Lukin, Dmitri Maslov, Peter Maunz, Christopher Monroe, John Preskill, Martin Roetteler, Martin J. Savage, and Jeff Thompson, “Quantum computer systems for scientific discovery,” PRX Quantum 2, 017001 (2021).
- Monika Aidelsburger, Luca Barbiero, Alejandro Bermudez, Titas Chanda, Alexandre Dauphin, Daniel González-Cuadra, Przemysław R. Grzybowski, Simon Hands, Fred Jendrzejewski, Johannes Jünemann, Gediminas Juzeliūnas, Valentin Kasper, Angelo Piga, Shi-Ju Ran, Matteo Rizzi, Germán Sierra, Luca Tagliacozzo, Emanuele Tirrito, Torsten V. Zache, Jakub Zakrzewski, Erez Zohar, and Maciej Lewenstein, “Cold atoms meet lattice gauge theory,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, 20210064 (2022).
- Erez Zohar, “Quantum simulation of lattice gauge theories in more than one space dimension: requirements, challenges and methods,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, 20210069 (2022).
- Natalie Klco, Alessandro Roggero, and Martin J Savage, “Standard model physics and the digital quantum revolution: thoughts about the interface,” Reports on Progress in Physics 85, 064301 (2022).
- Christian W. Bauer, Zohreh Davoudi, A. Baha Balantekin, Tanmoy Bhattacharya, Marcela Carena, Wibe A. de Jong, Patrick Draper, Aida El-Khadra, Nate Gemelke, Masanori Hanada, Dmitri Kharzeev, Henry Lamm, Ying-Ying Li, Junyu Liu, Mikhail Lukin, Yannick Meurice, Christopher Monroe, Benjamin Nachman, Guido Pagano, John Preskill, Enrico Rinaldi, Alessandro Roggero, David I. Santiago, Martin J. Savage, Irfan Siddiqi, George Siopsis, David Van Zanten, Nathan Wiebe, Yukari Yamauchi, Kübra Yeter-Aydeniz, and Silvia Zorzetti, “Quantum simulation for high-energy physics,” PRX Quantum 4, 027001 (2023).
- Alberto Di Meglio, Karl Jansen, Ivano Tavernelli, Constantia Alexandrou, Srinivasan Arunachalam, Christian W. Bauer, Kerstin Borras, Stefano Carrazza, Arianna Crippa, Vincent Croft, Roland de Putter, Andrea Delgado, Vedran Dunjko, Daniel J. Egger, Elias Fernandez-Combarro, Elina Fuchs, Lena Funcke, Daniel Gonzalez-Cuadra, Michele Grossi, Jad C. Halimeh, Zoe Holmes, Stefan Kuhn, Denis Lacroix, Randy Lewis, Donatella Lucchesi, Miriam Lucio Martinez, Federico Meloni, Antonio Mezzacapo, Simone Montangero, Lento Nagano, Voica Radescu, Enrique Rico Ortega, Alessandro Roggero, Julian Schuhmacher, Joao Seixas, Pietro Silvi, Panagiotis Spentzouris, Francesco Tacchino, Kristan Temme, Koji Terashi, Jordi Tura, Cenk Tuysuz, Sofia Vallecorsa, Uwe-Jens Wiese, Shinjae Yoo, and Jinglei Zhang, “Quantum computing for high-energy physics: State of the art and challenges. summary of the QC4HEP working group,” arXiv eprints (2023), arXiv:2307.03236 [quant-ph] .
- Jad C. Halimeh, Monika Aidelsburger, Fabian Grusdt, Philipp Hauke, and Bing Yang, “Cold-atom quantum simulators of gauge theories,” arXiv eprints (2023a), arXiv:2310.12201 [cond-mat.quant-gas] .
- Yanting Cheng and Hui Zhai, “Emergent gauge theory in Rydberg atom arrays,” arXiv eprints (2024), arXiv:2401.07708 [cond-mat.quant-gas] .
- Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, and Rainer Blatt, “Real-time dynamics of lattice gauge theories with a few-qubit quantum computer,” Nature 534, 516–519 (2016).
- N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage, “Quantum-classical computation of Schwinger model dynamics using quantum computers,” Phys. Rev. A 98, 032331 (2018).
- Frederik Görg, Kilian Sandholzer, Joaquín Minguzzi, Rémi Desbuquois, Michael Messer, and Tilman Esslinger, “Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter,” Nature Physics 15, 1161–1167 (2019).
- Christian Schweizer, Fabian Grusdt, Moritz Berngruber, Luca Barbiero, Eugene Demler, Nathan Goldman, Immanuel Bloch, and Monika Aidelsburger, “Floquet approach to ℤℤ\mathbb{Z}roman_ℤ2 lattice gauge theories with ultracold atoms in optical lattices,” Nature Physics 15, 1168–1173 (2019).
- Alexander Mil, Torsten V. Zache, Apoorva Hegde, Andy Xia, Rohit P. Bhatt, Markus K. Oberthaler, Philipp Hauke, Jürgen Berges, and Fred Jendrzejewski, “A scalable realization of local U(1) gauge invariance in cold atomic mixtures,” Science 367, 1128–1130 (2020).
- Bing Yang, Hui Sun, Robert Ott, Han-Yi Wang, Torsten V. Zache, Jad C. Halimeh, Zhen-Sheng Yuan, Philipp Hauke, and Jian-Wei Pan, “Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator,” Nature 587, 392–396 (2020a).
- Zhan Wang, Zi-Yong Ge, Zhongcheng Xiang, Xiaohui Song, Rui-Zhen Huang, Pengtao Song, Xue-Yi Guo, Luhong Su, Kai Xu, Dongning Zheng, and Heng Fan, “Observation of emergent ℤ2subscriptℤ2{\mathbb{Z}}_{2}roman_ℤ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge invariance in a superconducting circuit,” Phys. Rev. Research 4, L022060 (2022).
- Zhao-Yu Zhou, Guo-Xian Su, Jad C. Halimeh, Robert Ott, Hui Sun, Philipp Hauke, Bing Yang, Zhen-Sheng Yuan, Jürgen Berges, and Jian-Wei Pan, “Thermalization dynamics of a gauge theory on a quantum simulator,” Science 377, 311–314 (2022).
- Julius Mildenberger, Wojciech Mruczkiewicz, Jad C. Halimeh, Zhang Jiang, and Philipp Hauke, “Probing confinement in a ℤ2subscriptℤ2\mathbb{Z}_{2}roman_ℤ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT lattice gauge theory on a quantum computer,” arXiv eprints (2022), arXiv:2203.08905 [quant-ph] .
- Wei-Yong Zhang, Ying Liu, Yanting Cheng, Ming-Gen He, Han-Yi Wang, Tian-Yi Wang, Zi-Hang Zhu, Guo-Xian Su, Zhao-Yu Zhou, Yong-Guang Zheng, Hui Sun, Bing Yang, Philipp Hauke, Wei Zheng, Jad C. Halimeh, Zhen-Sheng Yuan, and Jian-Wei Pan, “Observation of microscopic confinement dynamics by a tunable topological θ𝜃\thetaitalic_θ-angle,” arXiv eprints (2023a), arXiv:2306.11794 [cond-mat.quant-gas] .
- Roland C. Farrell, Marc Illa, Anthony N. Ciavarella, and Martin J. Savage, “Scalable circuits for preparing ground states on digital quantum computers: The Schwinger model vacuum on 100 qubits,” arXiv eprints (2023), arXiv:2308.04481 [quant-ph] .
- Takis Angelides, Pranay Naredi, Arianna Crippa, Karl Jansen, Stefan Kühn, Ivano Tavernelli, and Derek S. Wang, “First-order phase transition of the Schwinger model with a quantum computer,” arXiv eprints (2023), arXiv:2312.12831 [hep-lat] .
- Jad C. Halimeh, Ian P. McCulloch, Bing Yang, and Philipp Hauke, “Tuning the topological θ𝜃\thetaitalic_θ-angle in cold-atom quantum simulators of gauge theories,” PRX Quantum 3, 040316 (2022).
- Yanting Cheng, Shang Liu, Wei Zheng, Pengfei Zhang, and Hui Zhai, “Tunable confinement-deconfinement transition in an ultracold-atom quantum simulator,” PRX Quantum 3, 040317 (2022).
- Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551, 579–584 (2017).
- C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, “Weak ergodicity breaking from quantum many-body scars,” Nature Physics 14, 745–749 (2018).
- Sanjay Moudgalya, Stephan Rachel, B. Andrei Bernevig, and Nicolas Regnault, “Exact excited states of nonintegrable models,” Phys. Rev. B 98, 235155 (2018a).
- Hongzheng Zhao, Joseph Vovrosh, Florian Mintert, and Johannes Knolle, “Quantum many-body scars in optical lattices,” Phys. Rev. Lett. 124, 160604 (2020).
- Paul Niklas Jepsen, Yoo Kyung ‘Eunice’ Lee, Hanzhen Lin, Ivana Dimitrova, Yair Margalit, Wen Wei Ho, and Wolfgang Ketterle, “Long-lived phantom helix states in Heisenberg quantum magnets,” Nature Physics 18, 899–904 (2022).
- Maksym Serbyn, Dmitry A. Abanin, and Zlatko Papić, “Quantum many-body scars and weak breaking of ergodicity,” Nature Physics 17, 675–685 (2021).
- Sanjay Moudgalya, B Andrei Bernevig, and Nicolas Regnault, “Quantum many-body scars and Hilbert space fragmentation: a review of exact results,” Reports on Progress in Physics 85, 086501 (2022).
- Anushya Chandran, Thomas Iadecola, Vedika Khemani, and Roderich Moessner, “Quantum many-body scars: A quasiparticle perspective,” Annual Review of Condensed Matter Physics 14, 443–469 (2023).
- Sanjay Moudgalya, Nicolas Regnault, and B. Andrei Bernevig, “Entanglement of exact excited states of Affleck-Kennedy-Lieb-Tasaki models: Exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis,” Phys. Rev. B 98, 235156 (2018b).
- Michael Schecter and Thomas Iadecola, “Weak ergodicity breaking and quantum many-body scars in spin-1 XY𝑋𝑌XYitalic_X italic_Y magnets,” Phys. Rev. Lett. 123, 147201 (2019).
- Cheng-Ju Lin and Olexei I. Motrunich, “Exact quantum many-body scar states in the Rydberg-blockaded atom chain,” Phys. Rev. Lett. 122, 173401 (2019).
- D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletić, and M. D. Lukin, “Controlling quantum many-body dynamics in driven Rydberg atom arrays,” Science 371, 1355–1359 (2021).
- Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T. Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin, “A quantum processor based on coherent transport of entangled atom arrays,” Nature 604, 451–456 (2022).
- Guo-Xian Su, Hui Sun, Ana Hudomal, Jean-Yves Desaules, Zhao-Yu Zhou, Bing Yang, Jad C. Halimeh, Zhen-Sheng Yuan, Zlatko Papić, and Jian-Wei Pan, “Observation of many-body scarring in a Bose-Hubbard quantum simulator,” Phys. Rev. Res. 5, 023010 (2023).
- Pengfei Zhang, Hang Dong, Yu Gao, Liangtian Zhao, Jie Hao, Jean-Yves Desaules, Qiujiang Guo, Jiachen Chen, Jinfeng Deng, Bobo Liu, Wenhui Ren, Yunyan Yao, Xu Zhang, Shibo Xu, Ke Wang, Feitong Jin, Xuhao Zhu, Bing Zhang, Hekang Li, Chao Song, Zhen Wang, Fangli Liu, Zlatko Papić, Lei Ying, H. Wang, and Ying-Cheng Lai, “Many-body Hilbert space scarring on a superconducting processor,” Nature Physics 19, 120–125 (2023b).
- Hang Dong, Jean-Yves Desaules, Yu Gao, Ning Wang, Zexian Guo, Jiachen Chen, Yiren Zou, Feitong Jin, Xuhao Zhu, Pengfei Zhang, Hekang Li, Zhen Wang, Qiujiang Guo, Junxiang Zhang, Lei Ying, and Zlatko Papić, “Disorder-tunable entanglement at infinite temperature,” Science Advances 9, eadj3822 (2023).
- Federica M. Surace, Paolo P. Mazza, Giuliano Giudici, Alessio Lerose, Andrea Gambassi, and Marcello Dalmonte, “Lattice gauge theories and string dynamics in Rydberg atom quantum simulators,” Phys. Rev. X 10, 021041 (2020).
- Thomas Iadecola and Michael Schecter, “Quantum many-body scar states with emergent kinetic constraints and finite-entanglement revivals,” Phys. Rev. B 101, 024306 (2020).
- Debasish Banerjee and Arnab Sen, “Quantum scars from zero modes in an abelian lattice gauge theory on ladders,” Phys. Rev. Lett. 126, 220601 (2021).
- Jad C. Halimeh, Luca Barbiero, Philipp Hauke, Fabian Grusdt, and Annabelle Bohrdt, “Robust quantum many-body scars in lattice gauge theories,” Quantum 7, 1004 (2023b).
- Ana Hudomal, Jean-Yves Desaules, Bhaskar Mukherjee, Guo-Xian Su, Jad C. Halimeh, and Zlatko Papić, “Driving quantum many-body scars in the PXP model,” Phys. Rev. B 106, 104302 (2022).
- Jean-Yves Desaules, Debasish Banerjee, Ana Hudomal, Zlatko Papić, Arnab Sen, and Jad C. Halimeh, “Weak ergodicity breaking in the Schwinger model,” Phys. Rev. B 107, L201105 (2023a).
- Jean-Yves Desaules, Ana Hudomal, Debasish Banerjee, Arnab Sen, Zlatko Papić, and Jad C. Halimeh, “Prominent quantum many-body scars in a truncated Schwinger model,” Phys. Rev. B 107, 205112 (2023b).
- Adith Sai Aramthottil, Utso Bhattacharya, Daniel González-Cuadra, Maciej Lewenstein, Luca Barbiero, and Jakub Zakrzewski, “Scar states in deconfined ℤ2subscriptℤ2{\mathbb{Z}}_{2}roman_ℤ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT lattice gauge theories,” Phys. Rev. B 106, L041101 (2022).
- Saptarshi Biswas, Debasish Banerjee, and Arnab Sen, “Scars from protected zero modes and beyond in U(1)𝑈1U(1)italic_U ( 1 ) quantum link and quantum dimer models,” SciPost Phys. 12, 148 (2022).
- Aiden Daniel, Andrew Hallam, Jean-Yves Desaules, Ana Hudomal, Guo-Xian Su, Jad C. Halimeh, and Zlatko Papić, “Bridging quantum criticality via many-body scarring,” Phys. Rev. B 107, 235108 (2023).
- Lukas Ebner, Andreas Schäfer, Clemens Seidl, Berndt Müller, and Xiaojun Yao, “Entanglement entropy of (2+1212+12 + 1)-dimensional SU(2) lattice gauge theory,” arXiv eprints (2024), arXiv:2401.15184 [hep-lat] .
- Indrajit Sau, Paolo Stornati, Debasish Banerjee, and Arnab Sen, “Sublattice scars and beyond in two-dimensional U(1)𝑈1U(1)italic_U ( 1 ) quantum link lattice gauge theories,” Phys. Rev. D 109, 034519 (2024).
- Jesse Osborne, Ian P. McCulloch, and Jad C. Halimeh, “Quantum many-body scarring in 2+1212+12 + 1D gauge theories with dynamical matter,” arXiv eprints (2024), arXiv:2403.08858 [cond-mat.quant-gas] .
- Thea Budde, Marina Krstić Marinković, and Joao C. Pinto Barros, “Quantum many-body scars for arbitrary integer spin in 2+1212+12 + 1D abelian gauge theories,” arXiv eprints (2024), arXiv:2403.08892 [hep-lat] .
- Umberto Borla, Ruben Verresen, Fabian Grusdt, and Sergej Moroz, “Confined phases of one-dimensional spinless fermions coupled to Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge theory,” Phys. Rev. Lett. 124, 120503 (2020).
- Matja ž Kebrič, Luca Barbiero, Christian Reinmoser, Ulrich Schollwöck, and Fabian Grusdt, “Confinement and Mott transitions of dynamical charges in one-dimensional lattice gauge theories,” Phys. Rev. Lett. 127, 167203 (2021).
- Matjaž Kebrič, Umberto Borla, Ulrich Schollwöck, Sergej Moroz, Luca Barbiero, and Fabian Grusdt, “Confinement induced frustration in a one-dimensional ℤ2subscriptℤ2\mathbb{Z}_{2}roman_ℤ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT lattice gauge theory,” New Journal of Physics 25, 013035 (2023a).
- Lukas Homeier, Annabelle Bohrdt, Simon Linsel, Eugene Demler, Jad C. Halimeh, and Fabian Grusdt, “Realistic scheme for quantum simulation of ℤ2subscriptℤ2\mathbb{Z}_{2}roman_ℤ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT lattice gauge theories with dynamical matter in (2 + 1)D,” Communications Physics 6, 127 (2023).
- Simon M. Linsel, Annabelle Bohrdt, Lukas Homeier, Lode Pollet, and Fabian Grusdt, “Percolation as a confinement order parameter in ℤ2subscriptℤ2\mathbb{Z}_{2}roman_ℤ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT lattice gauge theories,” arXiv eprints (2024), arXiv:2401.08770 [quant-ph] .
- Matjaž Kebrič, Jad C. Halimeh, Ulrich Schollwöck, and Fabian Grusdt, “Confinement in 1+1D ℤ2subscriptℤ2\mathbb{Z}_{2}roman_ℤ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT lattice gauge theories at finite temperature,” arXiv eprints (2023b), arXiv:2308.08592 [cond-mat.quant-gas] .
- Michael Fromm, Owe Philipsen, Michael Spannowsky, and Christopher Winterowd, “Simulating ℤ2subscriptℤ2\mathbb{Z}_{2}roman_ℤ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT lattice gauge theory with the variational quantum thermalizer,” EPJ Quantum Technology 11, 20 (2024).
- See the Supplemental Material for background calculations and additional examples that support the results in the main text. The Supplemental Material contains Refs. Borla et al. (2020); Iadecola and Schecter (2020); Maity and Hamazaki (2024); Oganesyan and Huse (2007); Atas et al. (2013); Khor et al. (2023); Lesanovsky and Katsura (2012); Turner et al. (2018); Oganesyan and Huse (2007); Atas et al. (2013); Khor et al. (2023).
- Zhi-Cheng Yang, Fangli Liu, Alexey V. Gorshkov, and Thomas Iadecola, “Hilbert-space fragmentation from strict confinement,” Phys. Rev. Lett. 124, 207602 (2020b).
- Sergey Bravyi, David P. DiVincenzo, and Daniel Loss, “Schrieffer–wolff transformation for quantum many-body systems,” Annals of Physics 326, 2793 – 2826 (2011).
- Shuichi Inokuchi, “On behaviors of cellular automata with rule 156,” Bulletin of Informatics and Cybernetics 30, 121 – 131 (1998).
- Somnath Maity and Ryusuke Hamazaki, “Kinetically constrained models constructed from dissipative quantum dynamics,” arXiv e-Prints (2024), arXiv:2403.12548 [quant-ph] .
- Pablo Sala, Tibor Rakovszky, Ruben Verresen, Michael Knap, and Frank Pollmann, “Ergodicity breaking arising from hilbert space fragmentation in dipole-conserving Hamiltonians,” Phys. Rev. X 10, 011047 (2020).
- Vedika Khemani, Michael Hermele, and Rahul Nandkishore, “Localization from Hilbert space shattering: From theory to physical realizations,” Phys. Rev. B 101, 174204 (2020).
- S Chandrasekharan and U.-J Wiese, “Quantum link models: A discrete approach to gauge theories,” Nuclear Physics B 492, 455 – 471 (1997).
- U.-J. Wiese, “Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories,” Annalen der Physik 525, 777–796 (2013).
- Jean-Yves Desaules, Guo-Xian Su, Ian P. McCulloch, Bing Yang, Zlatko Papić, and Jad C. Halimeh, “Ergodicity breaking under confinement in cold-atom quantum simulators,” Quantum 8, 1274 (2024).
- Alastair Kay, “Perfect, efficient, state transfer and its application as a constructive tool,” International Journal of Quantum Information 08, 641–676 (2010).
- Vadim Oganesyan and David A. Huse, “Localization of interacting fermions at high temperature,” Phys. Rev. B 75, 155111 (2007).
- Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, “Distribution of the ratio of consecutive level spacings in random matrix ensembles,” Phys. Rev. Lett. 110, 084101 (2013).
- Jean-Yves Desaules, Ana Hudomal, Christopher J. Turner, and Zlatko Papić, “Proposal for realizing quantum scars in the tilted 1D Fermi-Hubbard model,” Phys. Rev. Lett. 126, 210601 (2021).
- Alvise Bastianello, Umberto Borla, and Sergej Moroz, “Fragmentation and emergent integrable transport in the weakly tilted Ising chain,” Phys. Rev. Lett. 128, 196601 (2022).
- Brian J. J. Khor, D. M. Kurkcuoglu, T. J. Hobbs, G. N. Perdue, and Israel Klich, “Confinement and kink entanglement asymmetry on a quantum Ising chain,” arXiv preprint (2023), arXiv:2312.08601 .
- Igor Lesanovsky and Hosho Katsura, “Interacting Fibonacci anyons in a Rydberg gas,” Phys. Rev. A 86, 041601 (2012).