Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AI-Enhanced Cognitive Behavioral Therapy: Deep Learning and Large Language Models for Extracting Cognitive Pathways from Social Media Texts (2404.11449v1)

Published 17 Apr 2024 in cs.CL and cs.LG

Abstract: Cognitive Behavioral Therapy (CBT) is an effective technique for addressing the irrational thoughts stemming from mental illnesses, but it necessitates precise identification of cognitive pathways to be successfully implemented in patient care. In current society, individuals frequently express negative emotions on social media on specific topics, often exhibiting cognitive distortions, including suicidal behaviors in extreme cases. Yet, there is a notable absence of methodologies for analyzing cognitive pathways that could aid psychotherapists in conducting effective interventions online. In this study, we gathered data from social media and established the task of extracting cognitive pathways, annotating the data based on a cognitive theoretical framework. We initially categorized the task of extracting cognitive pathways as a hierarchical text classification with four main categories and nineteen subcategories. Following this, we structured a text summarization task to help psychotherapists quickly grasp the essential information. Our experiments evaluate the performance of deep learning and LLMs on these tasks. The results demonstrate that our deep learning method achieved a micro-F1 score of 62.34% in the hierarchical text classification task. Meanwhile, in the text summarization task, GPT-4 attained a Rouge-1 score of 54.92 and a Rouge-2 score of 30.86, surpassing the experimental deep learning model's performance. However, it may suffer from an issue of hallucination. We have made all models and codes publicly available to support further research in this field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. World Health Organization, “Depressive disorder (depression),” World Health Organization, 2023.
  2. Y. Huang, Y. Wang, H. Wang, Z. Liu, X. Yu, J. Yan, Y. Yu, C. Kou, X. Xu, J. Lu et al., “Prevalence of mental disorders in china: a cross-sectional epidemiological study,” The Lancet Psychiatry, vol. 6, no. 3, pp. 211–224, 2019.
  3. J. Robinson, G. Cox, E. Bailey, S. Hetrick, M. Rodrigues, S. Fisher, and H. Herrman, “Social media and suicide prevention: a systematic review,” Early intervention in psychiatry, vol. 10, no. 2, pp. 103–121, 2016.
  4. P. Cuijpers, C. Miguel, M. Harrer, C. Y. Plessen, M. Ciharova, D. Ebert, and E. Karyotaki, “Cognitive behavior therapy vs. control conditions, other psychotherapies, pharmacotherapies and combined treatment for depression: a comprehensive meta-analysis including 409 trials with 52,702 patients,” World Psychiatry, vol. 22, no. 1, pp. 105–115, 2023.
  5. D. J. Stein, S. J. Shoptaw, D. V. Vigo, C. Lund, P. Cuijpers, J. Bantjes, N. Sartorius, and M. Maj, “Psychiatric diagnosis and treatment in the 21st century: paradigm shifts versus incremental integration,” World Psychiatry, vol. 21, no. 3, pp. 393–414, 2022.
  6. T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing,” ieee Computational intelligenCe magazine, vol. 13, no. 3, pp. 55–75, 2018.
  7. D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learning for natural language processing,” IEEE transactions on neural networks and learning systems, vol. 32, no. 2, pp. 604–624, 2020.
  8. A. S. M. Alharbi and E. de Doncker, “Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information,” Cognitive Systems Research, vol. 54, pp. 50–61, 2019.
  9. P. Nandwani and R. Verma, “A review on sentiment analysis and emotion detection from text,” Social network analysis and mining, vol. 11, no. 1, p. 81, 2021.
  10. M. M. Tadesse, H. Lin, B. Xu, and L. Yang, “Detection of suicide ideation in social media forums using deep learning,” Algorithms, vol. 13, no. 1, p. 7, 2019.
  11. G. Fu, C. Song, J. Li, Y. Ma, P. Chen, R. Wang, B. X. Yang, and Z. Huang, “Distant supervision for mental health management in social media: suicide risk classification system development study,” Journal of medical internet research, vol. 23, no. 8, p. e26119, 2021.
  12. D. Singh and S. Singh, “Realising transfer learning through convolutional neural network and support vector machine for mental task classification,” Electronics Letters, vol. 56, no. 25, pp. 1375–1378, 2020.
  13. M. Aragon, A. P. L. Monroy, L. Gonzalez, D. E. Losada, and M. Montes, “DisorBERT: A Double Domain Adaptation Model for Detecting Signs of Mental Disorders in Social Media,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2023, pp. 15 305–15 318.
  14. W. Zhai, H. Qi, Q. Zhao, J. Li, Z. Wang, H. Wang, B. X. Yang, and G. Fu, “Chinese MentalBERT: Domain-Adaptive Pre-training on Social Media for Chinese Mental Health Text Analysis,” arXiv preprint arXiv:2402.09151, 2024.
  15. T. He, G. Fu, Y. Yu, F. Wang, J. Li, Q. Zhao, C. Song, H. Qi, D. Luo, H. Zou et al., “Towards a psychological generalist ai: A survey of current applications of large language models and future prospects,” arXiv preprint arXiv:2312.04578, 2023.
  16. H. Qi, Q. Zhao, C. Song, W. Zhai, D. Luo, S. Liu, Y. J. Yu, F. Wang, H. Zou, B. X. Yang et al., “Evaluating the efficacy of supervised learning vs large language models for identifying cognitive distortions and suicidal risks in Chinese social media,” arXiv preprint arXiv:2309.03564, 2023.
  17. Y. Sun, S. Wang, S. Feng, S. Ding, C. Pang, J. Shang, J. Liu, X. Chen, Y. Zhao, Y. Lu et al., “ERNIE 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation,” arXiv preprint arXiv:2107.02137, 2021.
  18. J. Zhang, Y. Zhao, M. Saleh, and P. Liu, “Pegasus: Pre-training with extracted gap-sentences for abstractive summarization,” in International Conference on Machine Learning.   PMLR, 2020, pp. 11 328–11 339.
  19. OpenAI, “Gpt-4 technical report,” 2023.
  20. A. Beck and M. Weishaar, “Cognitive therapy. Comprehensive handbook of cognitive therapy,” 1989.
  21. S. G. Hofmann, A. Asnaani, I. J. Vonk, A. T. Sawyer, and A. Fang, “The efficacy of cognitive behavioral therapy: A review of meta-analyses,” Cognitive therapy and research, vol. 36, pp. 427–440, 2012.
  22. D. F. Tolin, “Is cognitive–behavioral therapy more effective than other therapies?: A meta-analytic review,” Clinical psychology review, vol. 30, no. 6, pp. 710–720, 2010.
  23. D. Sarracino, G. Dimaggio, R. Ibrahim, R. Popolo, S. Sassaroli, and G. M. Ruggiero, “When REBT goes difficult: applying ABC-DEF to personality disorders,” Journal of Rational-Emotive & Cognitive-Behavior Therapy, vol. 35, pp. 278–295, 2017.
  24. J. Selva, “Albert Ellis’ ABC model in the cognitive behavioral therapy spotlight,” PositivePsychology. Retrieved from, 2021.
  25. D. D. Burns and A. T. Beck, “Feeling good: The new mood therapy,” 1999.
  26. K. A. Payne and G. Myhr, “Increasing access to cognitive-behavioural therapy (CBT) for the treatment of mental illness in Canada: a research framework and call for action,” Healthcare Policy, vol. 5, no. 3, p. e173, 2010.
  27. E. Bailey, S. Rice, J. Robinson, M. Nedeljkovic, and M. Alvarez-Jimenez, “Theoretical and empirical foundations of a novel online social networking intervention for youth suicide prevention: A conceptual review,” Journal of affective disorders, vol. 238, pp. 499–505, 2018.
  28. Y. K. Heng, “ReWIND: psychoeducation game leveraging cognitive behavioral therapy (CBT) to enhance emotion control for generalized anxiety disorder,” in Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, 2021, pp. 1–5.
  29. Z. Liu, D. Qiao, Y. Xu, W. Zhao, Y. Yang, D. Wen, X. Li, X. Nie, Y. Dong, S. Tang et al., “The efficacy of computerized cognitive behavioral therapy for depressive and anxiety symptoms in patients with COVID-19: randomized controlled trial,” Journal of medical Internet research, vol. 23, no. 5, p. e26883, 2021.
  30. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
  31. S. Graham, C. Depp, E. E. Lee, C. Nebeker, X. Tu, H.-C. Kim, and D. V. Jeste, “Artificial intelligence for mental health and mental illnesses: an overview,” Current psychiatry reports, vol. 21, pp. 1–18, 2019.
  32. V. A. Vuyyuru, G. V. Krishna, S. S. C. Mary, S. Kayalvili, and A. M. S. Alsubayhay, “A Transformer-CNN Hybrid Model for Cognitive Behavioral Therapy in Psychological Assessment and Intervention for Enhanced Diagnostic Accuracy and Treatment Efficiency,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 7, 2023.
  33. K. K. Fitzpatrick, A. Darcy, and M. Vierhile, “Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial,” JMIR mental health, vol. 4, no. 2, p. e7785, 2017.
  34. K. Rani, H. Vishnoi, and M. Mishra, “A Mental Health Chatbot Delivering Cognitive Behavior Therapy and Remote Health Monitoring Using NLP And AI,” in 2023 International Conference on Disruptive Technologies (ICDT).   IEEE, 2023, pp. 313–317.
  35. G. Fu, Q. Zhao, J. Li, D. Luo, C. Song, W. Zhai, S. Liu, F. Wang, Y. Wang, L. Cheng et al., “Enhancing psychological counseling with large language model: A multifaceted decision-support system for non-professionals,” arXiv preprint arXiv:2308.15192, 2023.
  36. A. Sharma, K. Rushton, I. Lin, D. Wadden, K. Lucas, A. Miner, T. Nguyen, and T. Althoff, “Cognitive reframing of negative thoughts through human-language model interaction,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2023, pp. 9977–10 000.
  37. A. Sharma, K. Rushton, I. W. Lin, T. Nguyen, and T. Althoff, “Facilitating self-guided mental health interventions through human-language model interaction: A case study of cognitive restructuring,” arXiv preprint arXiv:2310.15461, 2023.
  38. M. J. Huibers, L. Lorenzo-Luaces, P. Cuijpers, and N. Kazantzis, “On the road to personalized psychotherapy: A research agenda based on cognitive behavior therapy for depression,” Frontiers in Psychiatry, vol. 11, p. 607508, 2021.
  39. S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao, “Deep learning–based text classification: a comprehensive review,” ACM computing surveys (CSUR), vol. 54, no. 3, pp. 1–40, 2021.
  40. C. N. Silla and A. A. Freitas, “A survey of hierarchical classification across different application domains,” Data mining and knowledge discovery, vol. 22, pp. 31–72, 2011.
  41. J. Zhou, C. Ma, D. Long, G. Xu, N. Ding, H. Zhang, P. Xie, and G. Liu, “Hierarchy-aware global model for hierarchical text classification,” in Proceedings of the 58th annual meeting of the association for computational linguistics, 2020, pp. 1106–1117.
  42. H. Peng, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, Y. Song, and Q. Yang, “Large-scale hierarchical text classification with recursively regularized deep graph-cnn,” in Proceedings of the 2018 world wide web conference, 2018, pp. 1063–1072.
  43. Y. Mao, J. Tian, J. Han, and X. Ren, “Hierarchical Text Classification with Reinforced Label Assignment,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 445–455.
  44. J. Wehrmann, R. Cerri, and R. Barros, “Hierarchical multi-label classification networks,” in International conference on machine learning.   PMLR, 2018, pp. 5075–5084.
  45. Y. Meng, J. Shen, C. Zhang, and J. Han, “Weakly-supervised hierarchical text classification,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 6826–6833.
  46. X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, Y. Yao, A. Zhang, L. Zhang et al., “Pre-trained models: Past, present and future,” AI Open, vol. 2, pp. 225–250, 2021.
  47. A. Chiorrini, C. Diamantini, A. Mircoli, and D. Potena, “Emotion and sentiment analysis of tweets using BERT.” in EDBT/ICDT Workshops, vol. 3, 2021.
  48. S. Chopra, M. Auli, and A. M. Rush, “Abstractive sentence summarization with attentive recurrent neural networks,” in Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies, 2016, pp. 93–98.
  49. A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for abstractive sentence summarization,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, L. Màrquez, C. Callison-Burch, and J. Su, Eds.   Lisbon, Portugal: Association for Computational Linguistics, Sep. 2015, pp. 379–389. [Online]. Available: https://aclanthology.org/D15-1044
  50. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  51. A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” 2018.
  52. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.
  53. M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, “BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 7871–7880.
  54. T. Goyal, J. J. Li, and G. Durrett, “News summarization and evaluation in the era of gpt-3,” arXiv preprint arXiv:2209.12356, 2022.
  55. X. Pu, M. Gao, and X. Wan, “Summarization is (almost) dead,” arXiv preprint arXiv:2309.09558, 2023.
  56. Z. Xu, S. Jain, and M. Kankanhalli, “Hallucination is inevitable: An innate limitation of large language models,” arXiv preprint arXiv:2401.11817, 2024.
  57. S. Tonmoy, S. Zaman, V. Jain, A. Rani, V. Rawte, A. Chadha, and A. Das, “A comprehensive survey of hallucination mitigation techniques in large language models,” arXiv preprint arXiv:2401.01313, 2024.
  58. Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. Le, and R. Salakhutdinov, “Transformer-XL: Attentive language models beyond a fixed-length context,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019, pp. 2978–2988.
Citations (1)

Summary

We haven't generated a summary for this paper yet.