Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Min-Sum Subset Convolution (2404.11364v3)

Published 17 Apr 2024 in cs.DS

Abstract: Exponential-time approximation has recently gained attention as a practical way to deal with the bitter NP-hardness of well-known optimization problems. We study for the first time the $(1 + \varepsilon)$-approximate min-sum subset convolution. This enables exponential-time $(1 + \varepsilon)$-approximation schemes for problems such as minimum-cost $k$-coloring, the prize-collecting Steiner tree, and many others in computational biology. Technically, we present both a weakly- and strongly-polynomial approximation algorithm for this convolution, running in time $\widetilde O(2n \log M / \varepsilon)$ and $\widetilde O(2\frac{3n}{2} / \sqrt{\varepsilon})$, respectively. Our work revives research on tropical subset convolutions after nearly two decades.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Improved approximation algorithms for prize-collecting steiner tree and tsp. SIAM Journal on Computing, 40(2):309–332, 2011. arXiv:https://doi.org/10.1137/090771429, doi:10.1137/090771429.
  2. Better approximations for tree sparsity in nearly-linear time. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2215–2229. SIAM, 2017. doi:10.1137/1.9781611974782.145.
  3. A note on the prize collecting traveling salesman problem. Mathematical Programming, 59(1):413–420, Mar 1993. doi:10.1007/BF01581256.
  4. Fourier meets möbius: Fast subset convolution. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’07, page 67–74, New York, NY, USA, 2007. Association for Computing Machinery. doi:10.1145/1250790.1250801.
  5. Set partitioning via inclusion-exclusion. SIAM J. Comput., 39(2):546–563, 2009. doi:10.1137/070683933.
  6. A better-than-1.6-approximation for prize-collecting tsp, 2023. arXiv:2308.06254.
  7. An improved approximation guarantee for prize-collecting tsp. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, page 1848–1861, New York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3564246.3585159.
  8. Towards de novo identification of metabolites by analyzing tandem mass spectra. In Christian Huber, Oliver Kohlbacher, Michal Linial, Katrin Marcus, and Knut Reinert, editors, Computational Proteomics, volume 8101 of Dagstuhl Seminar Proceedings (DagSemProc), pages 1–5, Dagstuhl, Germany, 2008. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.08101.2, doi:10.4230/DagSemProc.08101.2.
  9. Necklaces, convolutions, and x + y. In Yossi Azar and Thomas Erlebach, editors, Algorithms – ESA 2006, pages 160–171, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
  10. Even faster knapsack via rectangular monotone min-plus convolution and balancing, 2024. arXiv:2404.05681.
  11. Approximating apsp without scaling: Equivalence of approximate min-plus and exact min-max. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 943–954, New York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3313276.3316373.
  12. An exact tree projection algorithm for wavelets. IEEE Signal Processing Letters, 20(11):1026–1029, 2013. doi:10.1109/LSP.2013.2278147.
  13. Clustered integer 3sum via additive combinatorics. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, page 31–40, New York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2746539.2746568.
  14. Deterministic APSP, Orthogonal Vectors, and More: Quickly Derandomizing Razborov-Smolensky, pages 1246–1255. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611974331.ch87, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611974331.ch87, doi:10.1137/1.9781611974331.ch87.
  15. Faster min-plus product for monotone instances. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, page 1529–1542, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3519935.3520057.
  16. Algebraic techniques: sieves, convolutions, and polynomials, pages 321–355. Springer International Publishing, Cham, 2015. doi:10.1007/978-3-319-21275-3_10.
  17. Parameterized Algorithms. Springer Publishing Company, Incorporated, 1st edition, 2015.
  18. On problems equivalent to (min, +)-convolution. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 22:1–22:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.22, doi:10.4230/LIPICS.ICALP.2017.22.
  19. The steiner problem in graphs. Networks, 1(3):195–207, 1971.
  20. Fast algorithms for (max, min)-matrix multiplication and bottleneck shortest paths. In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 384–391. SIAM, 2009. doi:10.1137/1.9781611973068.43.
  21. Zero knowledge and the chromatic number. In Steven Homer and Jin-Yi Cai, editors, Proceedings of the Eleveth Annual IEEE Conference on Computational Complexity, Philadelphia, Pennsylvania, USA, May 24-27, 1996, pages 278–287. IEEE Computer Society, 1996. doi:10.1109/CCC.1996.507690.
  22. Primal-dual approximation algorithms for the prize-collecting steiner tree problem. Inf. Process. Lett., 103(5):195–202, 2007. URL: https://doi.org/10.1016/j.ipl.2007.03.012, doi:10.1016/J.IPL.2007.03.012.
  23. Thinning out steiner trees: a node-based model for uniform edge costs. Mathematical Programming Computation, 9(2):203–229, Jun 2017. doi:10.1007/s12532-016-0111-0.
  24. Exact Exponential Algorithms. Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010.
  25. Dynamic programming for minimum steiner trees. Theory of Computing Systems, 41:493–500, 2007.
  26. Scip-jack—a solver for stp and variants with parallelization extensions. Mathematical Programming Computation, 9(2):231–296, Jun 2017. doi:10.1007/s12532-016-0114-x.
  27. A general approximation technique for constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995. arXiv:https://doi.org/10.1137/S0097539793242618, doi:10.1137/S0097539793242618.
  28. The prize collecting steiner tree problem: theory and practice. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, page 760–769, USA, 2000. Society for Industrial and Applied Mathematics.
  29. Better inapproximability results for maxclique, chromatic number and min-3lin-deletion. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I, volume 4051 of Lecture Notes in Computer Science, pages 226–237. Springer, 2006. doi:10.1007/11786986_21.
  30. S.R. Kosaraju. Efficient tree pattern matching. In 30th Annual Symposium on Foundations of Computer Science, pages 178–183, 1989. doi:10.1109/SFCS.1989.63475.
  31. On the fine-grained complexity of one-dimensional dynamic programming. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.21, doi:10.4230/LIPICS.ICALP.2017.21.
  32. A dual ascent-based branch-and-bound framework for the prize-collecting steiner tree and related problems. INFORMS J. on Computing, 30(2):402–420, may 2018. doi:10.1287/ijoc.2017.0788.
  33. A subquadratic approximation scheme for partition. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, page 70–88, USA, 2019. Society for Industrial and Applied Mathematics.
  34. On steiner trees and minimum spanning trees in hypergraphs. Oper. Res. Lett., 31(1):12–20, jan 2003. doi:10.1016/S0167-6377(02)00185-2.
  35. Speeding up dynamic programming for some np-hard graph recoloring problems. In Manindra Agrawal, Dingzhu Du, Zhenhua Duan, and Angsheng Li, editors, Theory and Applications of Models of Computation, pages 490–501, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
  36. Finding maximum colorful subtrees in practice. In Benny Chor, editor, Research in Computational Molecular Biology, pages 213–223, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
  37. On the exact solution of prize-collecting steiner tree problems. INFORMS Journal on Computing, 34(2):872–889, 2022.
  38. Efficient algorithms for detecting signaling pathways in protein interaction networks. In Satoru Miyano, Jill Mesirov, Simon Kasif, Sorin Istrail, Pavel A. Pevzner, and Michael Waterman, editors, Research in Computational Molecular Biology, pages 1–13, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
  39. All-pairs bottleneck paths in vertex weighted graphs. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, page 978–985, USA, 2007. Society for Industrial and Applied Mathematics.
  40. The fast heuristic algorithms and post-processing techniques to design large and low-cost communication networks. IEEE/ACM Trans. Netw., 27(1):375–388, 2019. doi:10.1109/TNET.2018.2888864.
  41. All pairs bottleneck paths and max-min matrix products in truly subcubic time. Theory Comput., 5(1):173–189, 2009. URL: https://doi.org/10.4086/toc.2009.v005a009, doi:10.4086/TOC.2009.V005A009.
  42. David Michael Warme. Spanning Trees in Hypergraphs with Applications to Steiner Trees. PhD thesis, USA, 1998. AAI9840474.
  43. K. Węgrzycki. Provably Optimal Dynamic Programming. 2019. URL: https://books.google.de/books?id=UmYfzwEACAAJ.
  44. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, page 664–673, New York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2591796.2591811.
  45. Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM, 49(3):289–317, may 2002. doi:10.1145/567112.567114.

Summary

We haven't generated a summary for this paper yet.