Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Social Navigation from Demonstrations with Deep Neural Networks (2404.11246v1)

Published 17 Apr 2024 in cs.RO

Abstract: Traditional path-planning techniques treat humans as obstacles. This has changed since robots started to enter human environments. On modern robots, social navigation has become an important aspect of navigation systems. To use learning-based techniques to achieve social navigation, a powerful framework that is capable of representing complex functions with as few data as possible is required. In this study, we benefited from recent advances in deep learning at both global and local planning levels to achieve human-aware navigation on a simulated robot. Two distinct deep models are trained with respective objectives: one for global planning and one for local planning. These models are then employed in the simulated robot. In the end, it has been shown that our model can successfully carry out both global and local planning tasks. We have shown that our system could generate paths that successfully reach targets while avoiding obstacles with better performance compared to feed-forward neural networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. W. Burgard, A. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun, “Experiences with an interactive museum tour-guide robot,” Artif. Intell., vol. 114, pp. 3–55, 1999.
  2. S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox, D. Haehnel, C. Rosenberg, N. Roy, et al., “Probabilistic algorithms and the interactive museum tour-guide robot minerva,” The International Journal of Robotics Research, vol. 19, no. 11, pp. 972–999, 2000.
  3. I. Nourbakhsh, C. Kunz, and T. Willeke, “The mobot museum robot installations: a five year experiment,” in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol. 4, 2003, pp. 3636–3641 vol.3.
  4. D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.
  5. S. Nonaka, K. Inoue, T. Arai, and Y. Mae, “Evaluation of human sense of security for coexisting robots using virtual reality. 1st report: evaluation of pick and place motion of humanoid robots,” in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 3.   IEEE, 2004, pp. 2770–2775.
  6. D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.
  7. F. Zanlungo, T. Ikeda, and T. Kanda, “Social force model with explicit collision prediction,” EPL (Europhysics Letters), vol. 93, no. 6, p. 68005, 2011.
  8. G. Ferrer, A. Garrell, and A. Sanfeliu, “Robot companion: A social-force based approach with human awareness-navigation in crowded environments,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2013, pp. 1688–1694.
  9. F. Farina, D. Fontanelli, A. Garulli, A. Giannitrapani, and D. Prattichizzo, “Walking ahead: The headed social force model,” PloS one, vol. 12, no. 1, p. e0169734, 2017.
  10. “Socially compliant mobile robot navigation via inverse reinforcement learning, author=Kretzschmar, Henrik and Spies, Markus and Sprunk, Christoph and Burgard, Wolfram,” The International Journal of Robotics Research, vol. 35, no. 11, pp. 1289–1307, 2016.
  11. K. Kitani, B. Ziebart, J. Bagnell, and M. Hebert, “Activity forecasting,” Computer Vision–ECCV 2012, pp. 201–214, 2012.
  12. D. Vasquez, B. Okal, and K. O. Arras, “Inverse reinforcement learning algorithms and features for robot navigation in crowds: an experimental comparison,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2014, pp. 1341–1346.
  13. B. Kim and J. Pineau, “Socially adaptive path planning in human environments using inverse reinforcement learning,” International Journal of Social Robotics, vol. 8, no. 1, pp. 51–66, 2016.
  14. M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep inverse reinforcement learning,” arXiv preprint arXiv:1507.04888, 2015.
  15. Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion planning with deep reinforcement learning,” CoRR, vol. abs/1703.08862, 2017. [Online]. Available: http://arxiv.org/abs/1703.08862
  16. L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navigation through raw depth inputs with generative adversarial imitation learning,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 1111–1117.
  17. A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially acceptable trajectories with generative adversarial networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2255–2264.
  18. Y. Che, A. M. Okamura, and D. Sadigh, “Efficient and trustworthy social navigation via explicit and implicit robot–human communication,” IEEE Transactions on Robotics, vol. 36, no. 3, pp. 692–707, 2020.
  19. Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations for mobile robot navigation,” in Proceedings. 1991 IEEE International Conference on Robotics and Automation, 1991, pp. 1398–1404 vol.2.
  20. M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. W. Teh, D. Rezende, and S. M. A. Eslami, “Conditional Neural Processes,” in Proceedings of the 35th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.   PMLR, 10–15 Jul 2018, pp. 1704–1713. [Online]. Available: http://proceedings.mlr.press/v80/garnelo18a.html
  21. J.-A. Meyer and D. Filliat, “Map-based navigation in mobile robots:: II. A review of map-learning and path-planning strategies,” Cognitive Systems Research, vol. 4, no. 4, pp. 283–317, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S138904170300007X
  22. S. Kambhampati and L. Davis, “Multiresolution path planning for mobile robots,” IEEE Journal on Robotics and Automation, vol. 2, no. 3, pp. 135–145, 1986.
  23. J. Giesbrecht, “Global path planning for unmanned ground vehicles,” Defence Research and Development Suffield (Alberta), Tech. Rep., 2004.
  24. J. Borenstein, Y. Koren, et al., “The vector field histogram-fast obstacle avoidance for mobile robots,” IEEE transactions on robotics and automation, vol. 7, no. 3, pp. 278–288, 1991.
  25. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, 1985, pp. 500–505.
  26. C. Rösmann, F. Hoffmann, and T. Bertram, “Timed-Elastic-Bands for time-optimal point-to-point nonlinear model predictive control,” in 2015 European Control Conference (ECC), 2015, pp. 3352–3357.
  27. Q. Zhu, Y. Yan, and Z. Xing, “Robot path planning based on artificial potential field approach with simulated annealing,” in Sixth International Conference on Intelligent Systems Design and Applications, vol. 2.   IEEE, 2006, pp. 622–627.
  28. P. Vadakkepat, K. C. Tan, and W. Ming-Liang, “Evolutionary artificial potential fields and their application in real time robot path planning,” in Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol. 1.   IEEE, 2000, pp. 256–263.
  29. K. Cai, C. Wang, J. Cheng, C. W. De Silva, and M. Q.-H. Meng, “Mobile Robot Path Planning in Dynamic Environments: A Survey,” arXiv preprint arXiv:2006.14195, 2020.
  30. T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot navigation: A survey,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1726–1743, 2013.
  31. M. Y. Seker, M. Imre, J. H. Piater, and E. Ugur, “Conditional Neural Movement Primitives.” in Robotics: Science and Systems, 2019.
  32. M. Yin, G. Tucker, M. Zhou, S. Levine, and C. Finn, “Meta-learning without memorization,” arXiv preprint arXiv:1912.03820, 2019.
  33. M. T. Akbulut, M. Y. Seker, A. E. Tekden, Y. Nagai, E. Oztop, and E. Ugur, “Adaptive Conditional Neural Movement Primitives via Representation Sharing Between Supervised and Reinforcement Learning,” arXiv preprint arXiv:2003.11334, 2020.
  34. J. Gordon, W. P. Bruinsma, A. Y. Foong, J. Requeima, Y. Dubois, and R. E. Turner, “Convolutional conditional neural processes,” arXiv preprint arXiv:1910.13556, 2019.
  35. E. Rohmer, S. P. N. Singh, and M. Freese, “CoppeliaSim (formerly V-REP): a Versatile and Scalable Robot Simulation Framework,” in Proc. of The International Conference on Intelligent Robots and Systems (IROS), 2013, www.coppeliarobotics.com.
  36. F. Robotics, Robotino, “Robotino 4: For research and education,” 2020. [Online]. Available: https://www.festo-didactic.com/int-en/learning-systems/factory-automation-industry-4.0/focus-trending-topics-i4.0/858/robotino-4-for-research-and-education.htm
  37. A. E. Tekden, A. Erdem, E. Erdem, M. Imre, M. Y. Seker, and E. Ugur, “Belief Regulated Dual Propagation Nets for Learning Action Effects on Groups of Articulated Objects,” 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yigit Yildirim (7 papers)
  2. Emre Ugur (37 papers)
Citations (2)