Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Physics-informed Actor-Critic for Coordination of Virtual Inertia from Power Distribution Systems (2404.11149v1)

Published 17 Apr 2024 in eess.SY and cs.SY

Abstract: The vanishing inertia of synchronous generators in transmission systems requires the utilization of renewables for inertial support. These are often connected to the distribution system and their support should be coordinated to avoid violation of grid limits. To this end, this paper presents the Physics-informed Actor-Critic (PI-AC) algorithm for coordination of Virtual Inertia (VI) from renewable Inverter-based Resources (IBRs) in power distribution systems. Acquiring a model of the distribution grid can be difficult, since certain parts are often unknown or the parameters are highly uncertain. To favor model-free coordination, Reinforcement Learning (RL) methods can be employed, necessitating a substantial level of training beforehand. The PI-AC is a RL algorithm that integrates the physical behavior of the power system into the Actor-Critic (AC) approach in order to achieve faster learning. To this end, we regularize the loss function with an aggregated power system dynamics model based on the swing equation. Throughout this paper, we explore the PI-AC functionality in a case study with the CIGRE 14-bus and IEEE 37-bus power distribution system in various grid settings. The PI-AC is able to achieve better rewards and faster learning than the exclusively data-driven AC algorithm and the metaheuristic Genetic Algorithm (GA).

Summary

We haven't generated a summary for this paper yet.