Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthesizing Realistic Data for Table Recognition (2404.11100v2)

Published 17 Apr 2024 in cs.CV and cs.LG

Abstract: To overcome the limitations and challenges of current automatic table data annotation methods and random table data synthesis approaches, we propose a novel method for synthesizing annotation data specifically designed for table recognition. This method utilizes the structure and content of existing complex tables, facilitating the efficient creation of tables that closely replicate the authentic styles found in the target domain. By leveraging the actual structure and content of tables from Chinese financial announcements, we have developed the first extensive table annotation dataset in this domain. We used this dataset to train several recent deep learning-based end-to-end table recognition models. Additionally, we have established the inaugural benchmark for real-world complex tables in the Chinese financial announcement domain, using it to assess the performance of models trained on our synthetic data, thereby effectively validating our method's practicality and effectiveness. Furthermore, we applied our synthesis method to augment the FinTabNet dataset, extracted from English financial announcements, by increasing the proportion of tables with multiple spanning cells to introduce greater complexity. Our experiments show that models trained on this augmented dataset achieve comprehensive improvements in performance, especially in the recognition of tables with multiple spanning cells.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com