Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

A Concise Tiling Strategy for Preserving Spatial Context in Earth Observation Imagery (2404.10927v1)

Published 16 Apr 2024 in cs.CV and eess.IV

Abstract: We propose a new tiling strategy, Flip-n-Slide, which has been developed for specific use with large Earth observation satellite images when the location of objects-of-interest (OoI) is unknown and spatial context can be necessary for class disambiguation. Flip-n-Slide is a concise and minimalistic approach that allows OoI to be represented at multiple tile positions and orientations. This strategy introduces multiple views of spatio-contextual information, without introducing redundancies into the training set. By maintaining distinct transformation permutations for each tile overlap, we enhance the generalizability of the training set without misrepresenting the true data distribution. Our experiments validate the effectiveness of Flip-n-Slide in the task of semantic segmentation, a necessary data product in geophysical studies. We find that Flip-n-Slide outperforms the previous state-of-the-art augmentation routines for tiled data in all evaluation metrics. For underrepresented classes, Flip-n-Slide increases precision by as much as 15.8%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. Slicing Aided Hyper Inference and Fine-Tuning for Small Object Detection. In 2022 IEEE International Conference on Image Processing (ICIP), pp.  966–970, October 2022. doi: 10.1109/ICIP46576.2022.9897990.
  2. COVIR: A virtual rendering of a novel NN architecture O-Net for COVID-19 Ct-scan automatic lung lesions segmentation. Comput Graph, 104:11–23, May 2022. ISSN 0097-8493. doi: 10.1016/j.cag.2022.03.003.
  3. TensorMask: A Foundation for Dense Object Segmentation. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  2061–2069, October 2019. doi: 10.1109/ICCV.2019.00215.
  4. AutoAugment: Learning Augmentation Strategies From Data. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  113–123, June 2019. doi: 10.1109/CVPR.2019.00020.
  5. RandAugment: Practical Automated Data Augmentation with a Reduced Search Space. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual, 2020.
  6. SuperMix: Supervising the Mixing Data Augmentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  13789–13798, June 2021. doi: 10.1109/CVPR46437.2021.01358.
  7. Stacked U-Nets for Ground Material Segmentation in Remote Sensing Imagery. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  252–2524, June 2018. doi: 10.1109/CVPRW.2018.00047. Guo et al. (2019) Sheng Guo, Weilin Huang, Xiao Zhang, Prasanna Srikhanta, Yin Cui, Yuan Li, Hartwig Adam, Matthew R. Scott, and Serge Belongie. The iMaterialist Fashion Attribute Dataset. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp.  3113–3116, October 2019. doi: 10.1109/ICCVW.2019.00377. Hestness et al. (2017) Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep Learning Scaling is Predictable, Empirically. arXiv, arXiv:1712.00409, December 2017. doi: 10.48550/arXiv.1712.00409. Hong et al. (2021) Minui Hong, Jinwoo Choi, and Gunhee Kim. StyleMix: Separating Content and Style for Enhanced Data Augmentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  14857–14865, June 2021. doi: 10.1109/CVPR46437.2021.01462. Huang et al. (2019) Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sheng Guo, Weilin Huang, Xiao Zhang, Prasanna Srikhanta, Yin Cui, Yuan Li, Hartwig Adam, Matthew R. Scott, and Serge Belongie. The iMaterialist Fashion Attribute Dataset. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp.  3113–3116, October 2019. doi: 10.1109/ICCVW.2019.00377. Hestness et al. (2017) Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep Learning Scaling is Predictable, Empirically. arXiv, arXiv:1712.00409, December 2017. doi: 10.48550/arXiv.1712.00409. Hong et al. (2021) Minui Hong, Jinwoo Choi, and Gunhee Kim. StyleMix: Separating Content and Style for Enhanced Data Augmentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  14857–14865, June 2021. doi: 10.1109/CVPR46437.2021.01462. Huang et al. (2019) Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep Learning Scaling is Predictable, Empirically. arXiv, arXiv:1712.00409, December 2017. doi: 10.48550/arXiv.1712.00409. Hong et al. (2021) Minui Hong, Jinwoo Choi, and Gunhee Kim. StyleMix: Separating Content and Style for Enhanced Data Augmentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  14857–14865, June 2021. doi: 10.1109/CVPR46437.2021.01462. Huang et al. (2019) Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Minui Hong, Jinwoo Choi, and Gunhee Kim. StyleMix: Separating Content and Style for Enhanced Data Augmentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  14857–14865, June 2021. doi: 10.1109/CVPR46437.2021.01462. Huang et al. (2019) Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  8. The iMaterialist Fashion Attribute Dataset. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp.  3113–3116, October 2019. doi: 10.1109/ICCVW.2019.00377. Hestness et al. (2017) Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep Learning Scaling is Predictable, Empirically. arXiv, arXiv:1712.00409, December 2017. doi: 10.48550/arXiv.1712.00409. Hong et al. (2021) Minui Hong, Jinwoo Choi, and Gunhee Kim. StyleMix: Separating Content and Style for Enhanced Data Augmentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  14857–14865, June 2021. doi: 10.1109/CVPR46437.2021.01462. Huang et al. (2019) Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep Learning Scaling is Predictable, Empirically. arXiv, arXiv:1712.00409, December 2017. doi: 10.48550/arXiv.1712.00409. Hong et al. (2021) Minui Hong, Jinwoo Choi, and Gunhee Kim. StyleMix: Separating Content and Style for Enhanced Data Augmentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  14857–14865, June 2021. doi: 10.1109/CVPR46437.2021.01462. Huang et al. (2019) Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Minui Hong, Jinwoo Choi, and Gunhee Kim. StyleMix: Separating Content and Style for Enhanced Data Augmentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  14857–14865, June 2021. doi: 10.1109/CVPR46437.2021.01462. Huang et al. (2019) Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  9. Deep Learning Scaling is Predictable, Empirically. arXiv, arXiv:1712.00409, December 2017. doi: 10.48550/arXiv.1712.00409. Hong et al. (2021) Minui Hong, Jinwoo Choi, and Gunhee Kim. StyleMix: Separating Content and Style for Enhanced Data Augmentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  14857–14865, June 2021. doi: 10.1109/CVPR46437.2021.01462. Huang et al. (2019) Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Minui Hong, Jinwoo Choi, and Gunhee Kim. StyleMix: Separating Content and Style for Enhanced Data Augmentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  14857–14865, June 2021. doi: 10.1109/CVPR46437.2021.01462. Huang et al. (2019) Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  10. StyleMix: Separating Content and Style for Enhanced Data Augmentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  14857–14865, June 2021. doi: 10.1109/CVPR46437.2021.01462. Huang et al. (2019) Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Bohao Huang, Daniel Reichman, Leslie M. Collins, Kyle Bradbury, and Jordan M. Malof. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  11. Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations. arXiv, arXiv:1805.12219, February 2019. doi: 10.48550/arXiv.1805.12219. Kingma & Ba (2017) Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  12. Adam: A Method for Stochastic Optimization. arXiv, arXiv:1412.6980, January 2017. doi: 10.48550/arXiv.1412.6980. Latifovic (2020) Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  13. Rasim Latifovic. 2020 Land Cover of Canada - Open Government Portal. https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, 2020. Li & Li (2023) Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Lujun Li and Anggeng Li. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  14. A2-Aug: Adaptive Automated Data Augmentation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  2267–2274, June 2023. doi: 10.1109/CVPRW59228.2023.00221. Pereira & dos Santos (2021) Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  15. Matheus Barros Pereira and Jefersson Alex dos Santos. ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.  278–285, October 2021. doi: 10.1109/SIBGRAPI54419.2021.00045. Pinckaers & Litjens (2018) Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hans Pinckaers and Geert Litjens. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  16. Training convolutional neural networks with megapixel images. arXiv, arXiv:1804.05712, April 2018. doi: 10.48550/arXiv.1804.05712. Reed et al. (2021) Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  17. SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2673–2682, June 2021. doi: 10.1109/CVPR46437.2021.00270. Reina et al. (2020) G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. G. Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  18. Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front Neurosci, 14:65, February 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00065. Ronneberger et al. (2015) Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  19. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pp.  234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4˙28. Roy et al. (2014) D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. D. P. Roy, M. A. Wulder, T. R. Loveland, Woodcock C.e., R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, and Z. Zhu. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  20. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145:154–172, April 2014. ISSN 0034-4257. doi: 10.1016/j.rse.2014.02.001. Shin et al. (2011) Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hoo-Chang Shin, Matthew Orton, David J. Collins, Simon Doran, and Martin O. Leach. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  21. Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset. In 2011 10th International Conference on Machine Learning and Applications and Workshops, volume 1, pp.  259–264, December 2011. doi: 10.1109/ICMLA.2011.38. Snow et al. (2023) Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Tasha Snow, Joanna Millstein, Jessica Scheick, Wilson Sauthoff, Wei Ji Leong, James Colliander, Fernando Pérez, James Munroe, Denis Felikson, Tyler Sutterley, and Matthew Siegfried. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  22. CryoCloud JupyterBook. Zenodo, January 2023. Szeliski (2022) Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  23. Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer International Publishing, Cham, 2022. ISBN 978-3-030-34371-2 978-3-030-34372-9. doi: 10.1007/978-3-030-34372-9. Tan et al. (2020) Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  24. EfficientDet: Scalable and Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10778–10787, June 2020. doi: 10.1109/CVPR42600.2020.01079. Ünel et al. (2019) F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. F. Özge Ünel, Burak O. Özkalayci, and Cevahir Çiğla. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  25. The Power of Tiling for Small Object Detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  582–591, June 2019. doi: 10.1109/CVPRW.2019.00084. Van Dyk & Meng (2001) David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. David A Van Dyk and Xiao-Li Meng. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  26. The Art of Data Augmentation. Journal of Computational and Graphical Statistics, 10(1):1–50, March 2001. ISSN 1061-8600, 1537-2715. doi: 10.1198/10618600152418584. Wang & Zhu (2023) Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Xuan Wang and Zhigang Zhu. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  27. Context understanding in computer vision: A survey. Computer Vision and Image Understanding, 229:103646, March 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.103646. Yang et al. (2018) Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  28. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions. In 2018 24th International Conference on Pattern Recognition (ICPR), pp.  2289–2294, August 2018. doi: 10.1109/ICPR.2018.8546189. Yun et al. (2019) Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  29. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  6022–6031, October 2019. doi: 10.1109/ICCV.2019.00612. Zeng & Zheng (2019) Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Guodong Zeng and Guoyan Zheng. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  30. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Medical Image Analysis, 57:149–164, October 2019. ISSN 1361-8415. doi: 10.1016/j.media.2019.07.003. Zhang et al. (2017) Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017. Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
  31. Mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com