Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strain-dependent Insulating State and Kondo Effect in Epitaxial SrIrO$_{3}$ Films (2404.10909v1)

Published 16 Apr 2024 in cond-mat.mtrl-sci and cond-mat.str-el

Abstract: The large spin-orbit coupling in iridium oxides plays a significant role in driving novel physical behaviors, including emergent phenomena in the films and heterostructures of perovskite and Ruddlesden-Popper iridates. In this work, we study the role of epitaxial strain on the electronic behavior of thin SrIrO$_3$ films. We find that compressive epitaxial strain leads to metallic transport behavior, but a slight tensile strain shows gapped behavior. Temperature-dependent resistivity measurements are used to examine different behaviors in films as a function of strain. We find Kondo contributions to the resistivity, with stronger effects in films that are thinner and under less compressive epitaxial strain. These results show the potential to tune SrIrO$_3$ into Kondo insulating states and open possibilities for a quantum critical point that can be controlled with strain in epitaxial films.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Y. Tokura, M. Kawasaki, and N. Nagaosa, “Emergent functions of quantum materials,” Nature Physics 13, 1056–1068 (2017).
  2. W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, “Correlated quantum phenomena in the strong spin-orbit regime,” Annual Review of Condensed Matter Physics 5, 57–82 (2014), arXiv: 1305.2193 ISBN: 1947-5454.
  3. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, “Emergent phenomena at oxide interfaces,” Nature Materials 11, 103–113 (2012), publisher: Nature Publishing Group.
  4. J. Falson and M. Kawasaki, “A review of the quantum Hall effects in MgZnO/ZnO heterostructures,” Reports on Progress in Physics 81, 056501 (2018), publisher: IOP Publishing.
  5. G. Cao and P. Schlottmann, “The challenge of spin–orbit-tuned ground states in iridates: a key issues review,” Reports on Progress in Physics 81, 042502 (2018), publisher: IOP Publishing.
  6. C. Lu and J. M. Liu, “The Je⁢f⁢f𝑒𝑓𝑓{}_{eff}start_FLOATSUBSCRIPT italic_e italic_f italic_f end_FLOATSUBSCRIPT = 1/2 Antiferromagnet Sr22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTIrO44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT: A Golden Avenue toward New Physics and Functions,” Advanced Materials 32, 1904508 (2020).
  7. J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, “Spin-Orbit Physics Giving Rise to Novel Phases in Correlated Systems: Iridates and Related Materials,” Annual Review of Condensed Matter Physics 7, 195–221 (2016), _eprint: https://doi.org/10.1146/annurev-conmatphys-031115-011319.
  8. F. A. Wang and T. Senthil, “Twisted hubbard model for Sr22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTIrO44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT: Magnetism and possible high temperature superconductivity,” Physical Review Letters 106 (2011), 10.1103/PhysRevLett.106.136402, arXiv: 1011.3500.
  9. D. Haskel, G. Fabbris, J. H. Kim, L. S. Veiga, J. R. Mardegan, C. A. Escanhoela, S. Chikara, V. Struzhkin, T. Senthil, B. J. Kim, G. Cao, and J. W. Kim, “Possible Quantum Paramagnetism in Compressed Sr22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTIrO44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT,” Physical Review Letters 124 (2020), 10.1103/PhysRevLett.124.067201, arXiv: 1911.09786 Publisher: American Physical Society.
  10. M. A. Zeb and H.-Y. Kee, “Interplay between spin-orbit coupling and Hubbard interaction in SrIrO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT and related 𝑃𝑏𝑛𝑚𝑃𝑏𝑛𝑚\mathit{Pbnm}italic_Pbnm perovskite oxides,” Physical Review B 86, 085149 (2012), publisher: American Physical Society.
  11. G. Cao, J. E. Crow, R. P. Guertin, P. F. Henning, C. C. Homes, M. Strongin, D. N. Basov, and E. Lochner, “Charge density wave formation accompanying ferromagnetic ordering in quasi-one-dimensional BaIrO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT,” Solid State Communications 113, 657–662 (2000).
  12. D. G. Schlom, “Perspective: Oxide molecular-beam epitaxy rocks!” APL Materials 3, 062403 (2015), iSBN: 0161060161.
  13. S. Thapa, R. Paudel, M. D. Blanchet, P. T. Gemperline, and R. B. Comes, “Probing surfaces and interfaces in complex oxide films via in situ x-ray photoelectron spectroscopy,” Journal of Materials Research 36, 26–51 (2021).
  14. G. Rimal and R. B. Comes, “Advances in complex oxide quantum materials through new approaches to molecular beam epitaxy,” Journal of Physics D: Applied Physics 57, 193001 (2024), publisher: IOP Publishing.
  15. Y. F. Nie, P. D. King, C. H. Kim, M. Uchida, H. I. Wei, B. D. Faeth, J. P. Ruf, J. P. Ruff, L. Xie, X. Pan, C. J. Fennie, D. G. Schlom, and K. M. Shen, “Interplay of spin-orbit interactions, dimensionality, and octahedral rotations in semimetallic SrIrO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT,” Physical Review Letters 114, 016401 (2015), arXiv: 1501.02265.
  16. R. Choudhary, S. Nair, Z. Yang, D. Lee, and B. Jalan, “Semi-metallic SrIrO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT films using solid-source metal-organic molecular beam epitaxy,” APL Materials 10, 091118 (2022), publisher: AIP Publishing, LLC.
  17. J. M. Longo, J. A. Kafalas, and R. J. Arnott, “Structure and properties of the high and low pressure forms of SrIrO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT,” Journal of Solid State Chemistry 3, 174–179 (1971).
  18. X. Liu, Y. Cao, B. Pal, S. Middey, M. Kareev, Y. Choi, P. Shafer, D. Haskel, E. Arenholz, and J. Chakhalian, “Synthesis and electronic properties of Ruddlesden-Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics,” Physical Review Materials 1, 075004 (2017), publisher: American Physical Society.
  19. R. Chaurasia, K. Asokan, K. Kumar, and A. K. Pramanik, “Low-temperature ferromagnetism in perovskite $\mathrm{Sr}\mathrm{Ir}{\mathrm{O}}_{3}$ films,” Physical Review B 103, 064418 (2021), publisher: American Physical Society.
  20. G. Cao, V. Durairaj, S. Chikara, L. E. DeLong, S. Parkin, and P. Schlottmann, “Non-Fermi-liquid behavior in nearly ferromagnetic SrIrO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT single crystals,” Physical Review B 76, 100402 (2007).
  21. A. Biswas, K.-S. Kim, and Y. H. Jeong, “Metal insulator transitions in perovskite SrIrO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT thin films,” Journal of Applied Physics 116, 213704 (2014).
  22. J. Liu, J.-H. Chu, C. R. Serrao, D. Yi, J. Koralek, C. Nelson, C. Frontera, D. Kriegner, L. Horak, E. Arenholz, J. Orenstein, A. Vishwanath, X. Marti, and R. Ramesh, “Tuning the electronic properties of Je⁢f⁢f𝑒𝑓𝑓{}_{eff}start_FLOATSUBSCRIPT italic_e italic_f italic_f end_FLOATSUBSCRIPT=1/2 correlated semimetal in epitaxial perovskite SrIrO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT,”  (2013), arXiv:1305.1732 [cond-mat].
  23. J. Yang, L. Hao, D. Meyers, T. Dasa, L. Xu, L. Horak, P. Shafer, E. Arenholz, G. Fabbris, Y. Choi, D. Haskel, J. Karapetrova, J.-W. Kim, P. J. Ryan, H. Xu, C. D. Batista, M. P. Dean, and J. Liu, “Strain-Modulated Slater-Mott Crossover of Pseudospin-Half Square-Lattice in (SrIrO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT)11{}_{1}start_FLOATSUBSCRIPT 1 end_FLOATSUBSCRIPT/(SrTiO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT)11{}_{1}start_FLOATSUBSCRIPT 1 end_FLOATSUBSCRIPT Superlattices,” Physical Review Letters 124, 177601 (2020), publisher: American Physical Society.
  24. K.-H. Kim, H.-S. Kim, and M. J. Han, “Electronic structure and magnetic properties of iridate superlattice SrIrO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/SrTiO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT,” Journal of Physics: Condensed Matter 26, 185501 (2014), publisher: IOP Publishing.
  25. D. Groenendijk, C. Autieri, J. Girovsky, M. C. Martinez-Velarte, N. Manca, G. Mattoni, A. Monteiro, N. Gauquelin, J. Verbeeck, A. Otte, M. Gabay, S. Picozzi, and A. Caviglia, “Spin-Orbit Semimetal SrIrO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT in the Two-Dimensional Limit,” Physical Review Letters 119, 256403 (2017), publisher: American Physical Society.
  26. M. Lee, J. R. Williams, S. Zhang, C. D. Frisbie, and D. Goldhaber-Gordon, “Electrolyte gate-controlled kondo effect in SrTiO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT,” Physical Review Letters 107, 256601 (2011), arXiv: 1108.0139 ISBN: 0031-9007\r1079-7114.
  27. X. Cai, J. Yue, P. Xu, B. Jalan, and V. S. Pribiag, “From weak antilocalization to Kondo scattering in a magnetic complex oxide interface,” Physical Review B 103, 115434 (2021).
  28. J. Kondo, “Resistance Minimum in Dilute Magnetic Alloys,” Progress of Theoretical Physics 32, 37–49 (1964), iSBN: 0521599474.
  29. J.-G. Cheng, J.-S. Zhou, Y.-F. Yang, H. D. Zhou, K. Matsubayashi, Y. Uwatoko, A. MacDonald, and J. B. Goodenough, “Possible Kondo Physics near a Metal-Insulator Crossover in the A𝐴{A}italic_A-Site Ordered Perovskite CaCu33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTIr44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPTO1212{}_{12}start_FLOATSUBSCRIPT 12 end_FLOATSUBSCRIPT,” Physical Review Letters 111, 176403 (2013), publisher: American Physical Society.
  30. C. Lin and A. A. Demkov, “Consequences of Oxygen-Vacancy Correlations at the SrTiO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT Interface,” Physical Review Letters 113, 157602 (2014), publisher: American Physical Society.
  31. H. Zheng, J. Terzic, F. Ye, X. G. Wan, D. Wang, J. Wang, X. Wang, P. Schlottmann, S. J. Yuan, and G. Cao, “Simultaneous metal-insulator and antiferromagnetic transitions in orthorhombic perovskite iridate Sr0.940.94{}_{0.94}start_FLOATSUBSCRIPT 0.94 end_FLOATSUBSCRIPTIr0.780.78{}_{0.78}start_FLOATSUBSCRIPT 0.78 end_FLOATSUBSCRIPTO2.682.68{}_{2.68}start_FLOATSUBSCRIPT 2.68 end_FLOATSUBSCRIPT single crystals,” Physical Review B 93, 235157 (2016), publisher: American Physical Society.
  32. Q. Cui, J.-G. Cheng, W. Fan, A. Taylor, S. Calder, M. McGuire, J.-Q. Yan, D. Meyers, X. Li, Y. Cai, Y. Jiao, Y. Choi, D. Haskel, H. Gotou, Y. Uwatoko, J. Chakhalian, A. Christianson, S. Yunoki, J. Goodenough, and J.-S. Zhou, “Slater Insulator in Iridate Perovskites with Strong Spin-Orbit Coupling,” Physical Review Letters 117, 176603 (2016), publisher: American Physical Society.
  33. U. Aschauer, R. Pfenninger, S. M. Selbach, T. Grande, and N. A. Spaldin, “Strain-controlled oxygen vacancy formation and ordering in CaMnO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT,” Physical Review B 88, 054111 (2013), publisher: American Physical Society.
  34. B. Kim, P. Liu, and C. Franchini, “Magnetic properties of bilayer Sr33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTIr22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTO77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT: Role of epitaxial strain and oxygen vacancies,” Physical Review B 95, 024406 (2017).
  35. L. Hao, D. Meyers, C. Frederick, G. Fabbris, J. Yang, N. Traynor, L. Horak, D. Kriegner, Y. Choi, J.-W. Kim, D. Haskel, P. J. Ryan, M. Dean, and J. Liu, “Two-Dimensional Je⁢f⁢fsubscript𝐽𝑒𝑓𝑓{J}_{eff}italic_J start_POSTSUBSCRIPT italic_e italic_f italic_f end_POSTSUBSCRIPT = 1/2 Antiferromagnetic Insulator Unraveled from Interlayer Exchange Coupling in Artificial Perovskite Iridate Superlattices,” Physical Review Letters 119, 027204 (2017).
  36. D. Gong, J. Yang, L. Hao, L. Horak, Y. Xin, E. Karapetrova, J. Strempfer, Y. Choi, J.-W. Kim, P. J. Ryan, and J. Liu, “Reconciling Monolayer and Bilayer Je⁢f⁢fsubscript𝐽𝑒𝑓𝑓{J}_{eff}italic_J start_POSTSUBSCRIPT italic_e italic_f italic_f end_POSTSUBSCRIPT=1/2 Square Lattices in Hybrid Oxide Superlattice,” Physical Review Letters 129, 187201 (2022), publisher: American Physical Society.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com