Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-To-End Training and Testing Gamification Framework to Learn Human Highway Driving (2404.10849v2)

Published 16 Apr 2024 in cs.RO and cs.AI

Abstract: The current autonomous stack is well modularized and consists of perception, decision making and control in a handcrafted framework. With the advances in AI and computing resources, researchers have been pushing the development of end-to-end AI for autonomous driving, at least in problems of small searching space such as in highway scenarios, and more and more photorealistic simulation will be critical for efficient learning. In this research, we propose a novel game-based end-to-end learning and testing framework for autonomous vehicle highway driving, by learning from human driving skills. Firstly, we utilize the popular game Grand Theft Auto V (GTA V) to collect highway driving data with our proposed programmable labels. Then, an end-to-end architecture predicts the steering and throttle values that control the vehicle by the image of the game screen. The predicted control values are sent to the game via a virtual controller to keep the vehicle in lane and avoid collisions with other vehicles on the road. The proposed solution is validated in GTA V games, and the results demonstrate the effectiveness of this end-to-end gamification framework for learning human driving skills.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. W. Kim, V. Añorve, and B. Tefft, “American driving survey, 2014–2017,” 2019.
  2. M. Martinez, C. Sitawarin, K. Finch, L. Meincke, A. Yablonski, and A. Kornhauser, “Beyond grand theft auto v for training, testing and enhancing deep learning in self driving cars,” arXiv preprint arXiv:1712.01397, 2017.
  3. H. Yun and D. Park, “Simulation of self-driving system by implementing digital twin with gta5,” in 2021 International Conference on Electronics, Information, and Communication (ICEIC).   IEEE, 2021, pp. 1–2.
  4. S. Singh, M. Prajapati, N. Vashist, H. S. Rajput, V. Mishra, U. Mittal, and P. Rana, “Action replication in gta5 using posenet architecture with lstm cells,” in 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM).   IEEE, 2021, pp. 544–549.
  5. J. Ru, H. Yu, H. Liu, J. Liu, X. Zhang, and H. Xu, “A bounded near-bottom cruise trajectory planning algorithm for underwater vehicles,” Journal of Marine Science and Engineering, vol. 11, no. 1, p. 7, 2022.
  6. X. Zhang, H. Liu, L. Xue, X. Li, W. Guo, S. Yu, J. Ru, and H. Xu, “Multi-objective collaborative optimization algorithm for heterogeneous cooperative tasks based on conflict resolution,” in International Conference on Autonomous Unmanned Systems.   Springer, 2021, pp. 2548–2557.
  7. H. Liu, Y. Shen, S. Yu, Z. Gao, and T. Wu, “Deep reinforcement learning for mobile robot path planning,” arXiv preprint arXiv:2404.06974, 2024.
  8. Y. Chen, W. Huang, S. Zhou, Q. Chen, and Z. Xiong, “Self-supervised neuron segmentation with multi-agent reinforcement learning,” in Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, 2023, pp. 609–617.
  9. Y. Chen, W. Huang, X. Liu, Q. Chen, and Z. Xiong, “Learning multiscale consistency for self-supervised electron microscopy instance segmentation,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, 2023.
  10. Y. Zhou, X. Li, Q. Wang, and J. Shen, “Visual in-context learning for large vision-language models,” arXiv preprint arXiv:2402.11574, 2024.
  11. B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,” IEEE Transactions on Intelligent Transportation Systems, 2021.
  12. Y. Chen, C. Liu, W. Huang, S. Cheng, R. Arcucci, and Z. Xiong, “Generative text-guided 3d vision-language pretraining for unified medical image segmentation,” arXiv preprint arXiv:2306.04811, 2023.
  13. Y. Zhou, X. Geng, T. Shen, C. Tao, G. Long, J.-G. Lou, and J. Shen, “Thread of thought unraveling chaotic contexts,” arXiv preprint arXiv:2311.08734, 2023.
  14. H. Yang, “An independent study of reinforcement learning and autonomous driving,” arXiv preprint arXiv:2110.07729, 2021.
  15. Y. Zhou, T. Shen, X. Geng, C. Tao, C. Xu, G. Long, B. Jiao, and D. Jiang, “Towards robust ranker for text retrieval,” in Findings of the Association for Computational Linguistics: ACL 2023, 2023, pp. 5387–5401.
  16. T. Phan-Minh, F. Howington, T.-S. Chu, S. U. Lee, M. S. Tomov, N. Li, C. Dicle, S. Findler, F. Suarez-Ruiz, R. Beaudoin, et al., “Driving in real life with inverse reinforcement learning,” arXiv preprint arXiv:2206.03004, 2022.
  17. J. Wu, Z. Lai, S. Chen, R. Tao, P. Zhao, and N. Hovakimyan, “The new agronomists: Language models are experts in crop management,” arXiv preprint arXiv:2403.19839, 2024.
  18. Y. Zhou, T. Shen, X. Geng, C. Tao, G. Long, C. Xu, and D. Jiang, “Fine-grained distillation for long document retrieval,” arXiv preprint arXiv:2212.10423, 2022.
  19. H. A. Arief, M. Arief, G. Zhang, Z. Liu, M. Bhat, U. G. Indahl, H. Tveite, and D. Zhao, “Sane: smart annotation and evaluation tools for point cloud data,” IEEE Access, vol. 8, pp. 131 848–131 858, 2020.
  20. U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. Cun, “Off-road obstacle avoidance through end-to-end learning,” Advances in neural information processing systems, vol. 18, 2005.
  21. S. Li, K. Sun, Z. Lai, X. Wu, F. Qiu, H. Xie, K. Miyata, and H. Li, “Ecnet: Effective controllable text-to-image diffusion models,” arXiv preprint arXiv:2403.18417, 2024.
  22. W. Ding, S. Li, G. Zhang, X. Lei, and H. Qian, “Vehicle pose and shape estimation through multiple monocular vision,” in 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO).   IEEE, 2018, pp. 709–715.
  23. B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, et al., “An empirical evaluation of deep learning on highway driving,” arXiv preprint arXiv:1504.01716, 2015.
  24. H. Yun and D. Park, “Virtualization of self-driving algorithms by interoperating embedded controllers on a game engine for a digital twining autonomous vehicle,” Electronics, vol. 10, no. 17, p. 2102, 2021.
  25. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016.
  26. A. Amini, I. Gilitschenski, J. Phillips, J. Moseyko, R. Banerjee, S. Karaman, and D. Rus, “Learning robust control policies for end-to-end autonomous driving from data-driven simulation,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1143–1150, 2020.
  27. A. Prakash, K. Chitta, and A. Geiger, “Multi-modal fusion transformer for end-to-end autonomous driving,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 7077–7087.
  28. J. Yao, C. Li, K. Sun, Y. Cai, H. Li, W. Ouyang, and H. Li, “Ndc-scene: Boost monocular 3d semantic scene completion in normalized device coordinates space,” in 2023 IEEE/CVF International Conference on Computer Vision (ICCV).   IEEE Computer Society, 2023, pp. 9421–9431.
  29. A. Zhu, J. Li, and C. Lu, “Pseudo view representation learning for monocular rgb-d human pose and shape estimation,” IEEE Signal Processing Letters, vol. 29, pp. 712–716, 2021.
  30. E. Pérez, C. E. Ardic, O. Çakıroğlu, K. Jacob, S. Kodera, L. Pompa, M. Rachid, H. Wang, Y. Zhou, C. Zimmer, et al., “Integrating ai in nde: Techniques, trends, and further directions,” arXiv preprint arXiv:2404.03449, 2024.
  31. M.-j. Lee and Y.-g. Ha, “Autonomous driving control using end-to-end deep learning,” in 2020 IEEE International Conference on Big Data and Smart Computing (BigComp).   IEEE, 2020, pp. 470–473.
  32. K. Xu, L. Chen, and S. Wang, “Data-driven kernel subspace clustering with local manifold preservation,” in 2022 IEEE International Conference on Data Mining Workshops (ICDMW).   IEEE, 2022, pp. 876–884.
  33. J. Kocić, N. Jovičić, and V. Drndarević, “An end-to-end deep neural network for autonomous driving designed for embedded automotive platforms,” Sensors, vol. 19, no. 9, p. 2064, 2019.
  34. C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path planning for autonomous vehicles using model predictive control,” in 2017 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2017, pp. 174–179.
  35. L. Li, “Hierarchical edge aware learning for 3d point cloud,” in Computer Graphics International Conference.   Springer, 2023, pp. 81–92.
  36. ——, “Cpseg: Finer-grained image semantic segmentation via chain-of-thought language prompting,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 513–522.
  37. S. Oehmcke, L. Li, K. Trepekli, J. C. Revenga, T. Nord-Larsen, F. Gieseke, and C. Igel, “Deep point cloud regression for above-ground forest biomass estimation from airborne lidar,” Remote Sensing of Environment, vol. 302, p. 113968, 2024.
  38. S. Ramos, S. Gehrig, P. Pinggera, U. Franke, and C. Rother, “Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling,” in 2017 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2017, pp. 1025–1032.
  39. K. Xu, L. Chen, and S. Wang, “A multi-view kernel clustering framework for categorical sequences,” Expert Systems with Applications, vol. 197, p. 116637, 2022.
  40. A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja, “Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues,” Array, vol. 10, p. 100057, 2021.
  41. T. Deng, H. Xie, J. Wang, and W. Chen, “Long-term visual simultaneous localization and mapping: Using a bayesian persistence filter-based global map prediction,” IEEE Robotics & Automation Magazine, vol. 30, no. 1, pp. 36–49, 2023.
  42. Y. Zhou, A. Osman, M. Willms, and A. Kunz, “Semantic wireframe detection.”
  43. R. Simhambhatla, K. Okiah, S. Kuchkula, and R. Slater, “Self-driving cars: Evaluation of deep learning techniques for object detection in different driving conditions,” SMU Data Science Review, vol. 2, no. 1, p. 23, 2019.
  44. T. Deng, G. Shen, T. Qin, J. Wang, W. Zhao, J. Wang, D. Wang, and W. Chen, “Plgslam: Progressive neural scene represenation with local to global bundle adjustment,” arXiv preprint arXiv:2312.09866, 2023.
  45. Y. Huang and J. J. Yang, “Symmetric contrastive learning for robust fault detection in time-series traffic sensor data,” International Journal of Data Science and Analytics, pp. 1–15, 2024.
  46. ——, “Semi-supervised multiscale dual-encoding method for faulty traffic data detection,” arXiv preprint arXiv:2212.13596, 2022.
  47. G. R. Taylor, A. J. Chosak, and P. C. Brewer, “Ovvv: Using virtual worlds to design and evaluate surveillance systems,” in 2007 IEEE conference on computer vision and pattern recognition.   IEEE, 2007, pp. 1–8.
  48. T. Deng, Y. Chen, L. Zhang, J. Yang, S. Yuan, D. Wang, and W. Chen, “Compact 3d gaussian splatting for dense visual slam,” arXiv preprint arXiv:2403.11247, 2024.
  49. T. Deng, S. Liu, X. Wang, Y. Liu, D. Wang, and W. Chen, “Prosgnerf: Progressive dynamic neural scene graph with frequency modulated auto-encoder in urban scenes,” arXiv preprint arXiv:2312.09076, 2023.
  50. H. Wang, Y. Zhou, E. Perez, and F. Roemer, “Jointly learning selection matrices for transmitters, receivers and fourier coefficients in multichannel imaging,” arXiv preprint arXiv:2402.19023, 2024.
  51. A. Shafaei, J. J. Little, and M. Schmidt, “Play and learn: Using video games to train computer vision models,” arXiv preprint arXiv:1608.01745, 2016.
  52. T. Deng, Y. Wang, H. Xie, H. Wang, J. Wang, D. Wang, and W. Chen, “Neslam: Neural implicit mapping and self-supervised feature tracking with depth completion and denoising,” arXiv preprint arXiv:2403.20034, 2024.
  53. K. W. Tong, P. Z. Sun, E. Q. Wu, C. Wu, and Z. Jiang, “Adaptive cost volume representation for unsupervised high-resolution stereo matching,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 912–922, 2022.
  54. K. W. Tong, Z. Shi, G. Zhu, Y. Duan, Y. Hou, E. Q. Wu, and L. Zhu, “Large-scale aerial scene perception based on self-supervised multi-view stereo via cycled generative adversarial network,” Information Fusion, p. 102399, 2024.
  55. M. Li, Y. Zhou, G. Jiang, T. Deng, Y. Wang, and H. Wang, “Ddn-slam: Real-time dense dynamic neural implicit slam,” 2024.
  56. A. Berg, J. Deng, and L. Fei-Fei, “Large scale visual recognition challenge (ilsvrc), 2010,” URL http://www. image-net. org/challenges/LSVRC, vol. 3, 2010.
  57. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, vol. 25, 2012.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com