Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An angle rounding parameter initialization technique for ma-QAOA (2404.10743v2)

Published 16 Apr 2024 in quant-ph

Abstract: The multi-angle quantum approximate optimization algorithm (ma-QAOA) is a recently introduced algorithm that gives at least the same approximation ratio as the quantum approximate optimization algorithm (QAOA) and, in most cases, gives a significantly higher approximation ratio than QAOA. One drawback to ma-QAOA is that it uses significantly more classical parameters than QAOA, so the classical optimization component more complex. In this paper, we motivate a new parameter initialization strategy in which angles are initially randomly set to multiples of $\pi/8$ between $-\pi$ and $\pi$ and this vector is used to seed one round of BFGS. We find that this parameter initialization strategy gives average approximation ratios of $0.900$, $0.982$, and $0.997$ for $p = 1, 2, 3$ layers of ma-QAOA. This is comparable to the average approximation ratios of ma-QAOA where the optimal parameters are found using BFGS with 1 random starting seed, which are $0.900$, $0.982$, and $0.996$. We also test another parameter initialization strategy in which angles corresponding to maximal degree vertices in the graph are set to 0 while all other are randomly initialized to random multiples of $\pi/8$. Using this strategy, the average approximation ratios are $0.897$, $0.984$, and $0.997$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.
  2. G. G. Guerreschi and A. Y. Matsuura, “Qaoa for max-cut requires hundreds of qubits for quantum speed-up,” Scientific reports, vol. 9, 2019.
  3. R. Herrman, L. Treffert, J. Ostrowski, P. C. Lotshaw, T. S. Humble, and G. Siopsis, “Impact of graph structures for qaoa on maxcut,” arXiv preprint arXiv:2102.05997, 2021.
  4. G. E. Crooks, “Performance of the quantum approximate optimization algorithm on the maximum cut problem,” arXiv preprint arXiv:1811.08419, 2018.
  5. Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, “Quantum approximate optimization algorithm for maxcut: A fermionic view,” Physical Review A, vol. 97, no. 2, p. 022304, 2018.
  6. A. Ozaeta, W. van Dam, and P. L. McMahon, “Expectation values from the single-layer quantum approximate optimization algorithm on ising problems,” Quantum Science and Technology, vol. 7, no. 4, p. 045036, sep 2022. [Online]. Available: https://doi.org/10.1088%2F2058-9565%2Fac9013
  7. L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices,” Physical Review X, vol. 10, no. 2, June 2020. [Online]. Available: https://doi.org/10.1103%2Fphysrevx.10.021067
  8. N. Earnest, C. Tornow, and D. J. Egger, “Pulse-efficient circuit transpilation for quantum applications on cross-resonance-based hardware,” Physical Review Research, vol. 3, no. 4, p. 043088, 2021.
  9. J. Wurtz and D. Lykov, “Fixed-angle conjectures for the quantum approximate optimization algorithm on regular maxcut graphs,” Physical Review A, vol. 104, no. 5, p. 052419, 2021.
  10. R. Herrman, P. C. Lotshaw, J. Ostrowski, T. S. Humble, and G. Siopsis, “Multi-angle quantum approximate optimization algorithm,” arXiv preprint arXiv:2109.11455, 2021.
  11. K. Shi, R. Herrman, R. Shaydulin, S. Chakrabarti, M. Pistoia, and J. Larson, “Multiangle qaoa does not always need all its angles,” 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC), pp. 414–419, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9996634/
  12. V. Vijendran, A. Das, D. E. Koh, S. M. Assad, and P. K. Lam, “An expressive ansatz for low-depth quantum optimisation,” arXiv preprint arXiv:2302.04479, 2023.
  13. J. Wurtz and P. J. Love, “Classically optimal variational quantum algorithms,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–7, 2021.
  14. I. Gaidai and R. Herrman, “Performance analysis of multi-angle qaoa for p>1𝑝1p>1italic_p > 1,” arXiv e-prints, pp. arXiv–2312, 2023.
  15. S. H. Sack and M. Serbyn, “Quantum annealing initialization of the quantum approximate optimization algorithm,” Quantum, vol. 5, p. 491, 2021. [Online]. Available: https://quantum-journal.org/papers/q-2021-07-01-491/
  16. S. H. Sack, R. A. Medina, R. Kueng, and M. Serbyn, “Recursive greedy initialization of the quantum approximate optimization algorithm with guaranteed improvement,” Physical Review A, vol. 107, p. 062404, 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.107.062404
  17. J. Sud, S. Hadfield, E. Rieffel, N. Tubman, and T. Hogg, “A parameter setting heuristic for the quantum alternating operator ansatz,” 2022.
  18. S. H. Sureshbabu, D. Herman, R. Shaydulin, J. Basso, S. Chakrabarti, Y. Sun, and M. Pistoia, “Parameter setting in quantum approximate optimization of weighted problems,” 2023.
  19. A. Wilkie, “Angle rounding qaoa,” 2024, found at https://github.com/Vilcius/Angle-Rounding-QAOA.
  20. I. Gaidai, “Ma-qaoa,” found at https://github.com/GaidaiIgor/MA-QAOA.
  21. F. Sauvage, M. Larocca, P. J. Coles, and M. Cerezo, “Building spatial symmetries into parameterized quantum circuits for faster training,” Quantum Science and Technology, vol. 9, no. 1, p. 015029, 2024.
  22. R. Shaydulin and S. M. Wild, “Exploiting symmetry reduces the cost of training qaoa,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–9, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com