An angle rounding parameter initialization technique for ma-QAOA (2404.10743v2)
Abstract: The multi-angle quantum approximate optimization algorithm (ma-QAOA) is a recently introduced algorithm that gives at least the same approximation ratio as the quantum approximate optimization algorithm (QAOA) and, in most cases, gives a significantly higher approximation ratio than QAOA. One drawback to ma-QAOA is that it uses significantly more classical parameters than QAOA, so the classical optimization component more complex. In this paper, we motivate a new parameter initialization strategy in which angles are initially randomly set to multiples of $\pi/8$ between $-\pi$ and $\pi$ and this vector is used to seed one round of BFGS. We find that this parameter initialization strategy gives average approximation ratios of $0.900$, $0.982$, and $0.997$ for $p = 1, 2, 3$ layers of ma-QAOA. This is comparable to the average approximation ratios of ma-QAOA where the optimal parameters are found using BFGS with 1 random starting seed, which are $0.900$, $0.982$, and $0.996$. We also test another parameter initialization strategy in which angles corresponding to maximal degree vertices in the graph are set to 0 while all other are randomly initialized to random multiples of $\pi/8$. Using this strategy, the average approximation ratios are $0.897$, $0.984$, and $0.997$.
- E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.
- G. G. Guerreschi and A. Y. Matsuura, “Qaoa for max-cut requires hundreds of qubits for quantum speed-up,” Scientific reports, vol. 9, 2019.
- R. Herrman, L. Treffert, J. Ostrowski, P. C. Lotshaw, T. S. Humble, and G. Siopsis, “Impact of graph structures for qaoa on maxcut,” arXiv preprint arXiv:2102.05997, 2021.
- G. E. Crooks, “Performance of the quantum approximate optimization algorithm on the maximum cut problem,” arXiv preprint arXiv:1811.08419, 2018.
- Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, “Quantum approximate optimization algorithm for maxcut: A fermionic view,” Physical Review A, vol. 97, no. 2, p. 022304, 2018.
- A. Ozaeta, W. van Dam, and P. L. McMahon, “Expectation values from the single-layer quantum approximate optimization algorithm on ising problems,” Quantum Science and Technology, vol. 7, no. 4, p. 045036, sep 2022. [Online]. Available: https://doi.org/10.1088%2F2058-9565%2Fac9013
- L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices,” Physical Review X, vol. 10, no. 2, June 2020. [Online]. Available: https://doi.org/10.1103%2Fphysrevx.10.021067
- N. Earnest, C. Tornow, and D. J. Egger, “Pulse-efficient circuit transpilation for quantum applications on cross-resonance-based hardware,” Physical Review Research, vol. 3, no. 4, p. 043088, 2021.
- J. Wurtz and D. Lykov, “Fixed-angle conjectures for the quantum approximate optimization algorithm on regular maxcut graphs,” Physical Review A, vol. 104, no. 5, p. 052419, 2021.
- R. Herrman, P. C. Lotshaw, J. Ostrowski, T. S. Humble, and G. Siopsis, “Multi-angle quantum approximate optimization algorithm,” arXiv preprint arXiv:2109.11455, 2021.
- K. Shi, R. Herrman, R. Shaydulin, S. Chakrabarti, M. Pistoia, and J. Larson, “Multiangle qaoa does not always need all its angles,” 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC), pp. 414–419, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9996634/
- V. Vijendran, A. Das, D. E. Koh, S. M. Assad, and P. K. Lam, “An expressive ansatz for low-depth quantum optimisation,” arXiv preprint arXiv:2302.04479, 2023.
- J. Wurtz and P. J. Love, “Classically optimal variational quantum algorithms,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–7, 2021.
- I. Gaidai and R. Herrman, “Performance analysis of multi-angle qaoa for p>1𝑝1p>1italic_p > 1,” arXiv e-prints, pp. arXiv–2312, 2023.
- S. H. Sack and M. Serbyn, “Quantum annealing initialization of the quantum approximate optimization algorithm,” Quantum, vol. 5, p. 491, 2021. [Online]. Available: https://quantum-journal.org/papers/q-2021-07-01-491/
- S. H. Sack, R. A. Medina, R. Kueng, and M. Serbyn, “Recursive greedy initialization of the quantum approximate optimization algorithm with guaranteed improvement,” Physical Review A, vol. 107, p. 062404, 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.107.062404
- J. Sud, S. Hadfield, E. Rieffel, N. Tubman, and T. Hogg, “A parameter setting heuristic for the quantum alternating operator ansatz,” 2022.
- S. H. Sureshbabu, D. Herman, R. Shaydulin, J. Basso, S. Chakrabarti, Y. Sun, and M. Pistoia, “Parameter setting in quantum approximate optimization of weighted problems,” 2023.
- A. Wilkie, “Angle rounding qaoa,” 2024, found at https://github.com/Vilcius/Angle-Rounding-QAOA.
- I. Gaidai, “Ma-qaoa,” found at https://github.com/GaidaiIgor/MA-QAOA.
- F. Sauvage, M. Larocca, P. J. Coles, and M. Cerezo, “Building spatial symmetries into parameterized quantum circuits for faster training,” Quantum Science and Technology, vol. 9, no. 1, p. 015029, 2024.
- R. Shaydulin and S. M. Wild, “Exploiting symmetry reduces the cost of training qaoa,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–9, 2021.