Attention-Aware Visualization: Tracking and Responding to User Perception Over Time (2404.10732v2)
Abstract: We propose the notion of Attention-Aware Visualizations (AAVs) that track the user's perception of a visual representation over time and feed this information back to the visualization. Such context awareness is particularly useful for ubiquitous and immersive analytics where knowing which embedded visualizations the user is looking at can be used to make visualizations react appropriately to the user's attention: for example, by highlighting data the user has not yet seen. We can separate the approach into three components: (1) measuring the user's gaze on a visualization and its parts; (2) tracking the user's attention over time; and (3) reactively modifying the visual representation based on the current attention metric. In this paper, we present two separate implementations of AAV: a 2D data-agnostic method for web-based visualizations that can use an embodied eyetracker to capture the user's gaze, and a 3D data-aware one that uses the stencil buffer to track the visibility of each individual mark in a visualization. Both methods provide similar mechanisms for accumulating attention over time and changing the appearance of marks in response. We also present results from a qualitative evaluation studying visual feedback and triggering mechanisms for capturing and revisualizing attention.
- Context-awareness in wearable and ubiquitous computing. Virtual Reality, 3(3):200–211, sep 1998. doi: 10 . 1007/BF01408562
- S. S. Alam and R. Jianu. Analyzing eye-tracking information in visualization and data space: From where on the screen to what on the screen. IEEE Transactions on Visualization and Computer Graphics, 23(5):1492–1505, 2017. doi: 10 . 1109/TVCG . 2016 . 2535340
- Engineering context-aware systems and applications: A survey. Journal of Systems and Software, 117:55–83, 2016. doi: 10 . 1016/j . jss . 2016 . 02 . 010
- Context awareness in mobile computing environments. Wireless Personal Communications, 42(3):445–464, aug 2007. doi: 10 . 1007/s11277-006-9187-6
- Determining what individual sus scores mean: adding an adjective rating scale. Journal of Usability Studies, 4(3):114–123, may 2009.
- Triangulating user behavior using eye movement, interaction, and think aloud data. In Proceedings of the ACM Symposium on Eye Tracking Research & Applications, pp. 175–182. ACM, New York, NY, USA, 2016. doi: 10 . 1145/2857491 . 2857523
- State-of-the-art of visualization for eye tracking data. In State of the Art Reports of the Eurographics Conference on Visualization. Eurographics Association, 2014. doi: 10 . 2312/EUROVISSTAR . 20141173
- R. A. Bolt. Gaze-orchestrated dynamic windows. In Proceedings of the ACM Conference on Computer Graphics and Interactive Techniques, pp. 109–119. ACM, New York, NY, USA, 1981. doi: 10 . 1145/800224 . 806796
- D33{{}^{3}}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT Data-Driven Documents. 17(12):2301–2309, Dec. 2011. doi: 10 . 1109/TVCG . 2011 . 185
- J. Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in industry, 189(194):4–7, 1996.
- M. Burch. Eye Tracking and Visual Analytics. River Publishers, Gistrup, Denmark, 2021.
- Evaluation of traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE Transactions on Visualization and Computer Graphics, 17(12):2440–2448, 2011. doi: 10 . 1109/TVCG . 2011 . 193
- A. K. Dey. Understanding and using context. Personal Ubiquitous Comput., 5(1):4–7, jan 2001. doi: 10 . 1007/s007790170019
- N. Elmqvist and P. Irani. Ubiquitous Analytics: Interacting with Big Data Anywhere, Anytime. Computer, 46(4):86–89, 2013. doi: 10 . 1109/MC . 2013 . 147
- N. Elmqvist and P. Tsigas. A taxonomy of 3D occlusion management for visualization. IEEE Transactions on Visualization and Computer Graphics, 14(5):1095–1109, 2008. doi: 10 . 1109/TVCG . 2008 . 59
- D. Fono and R. Vertegaal. EyeWindows: evaluation of eye-controlled zooming windows for focus selection. In Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 151–160. ACM, New York, NY, USA, 2005. doi: 10 . 1145/1054972 . 1054994
- VETA: visual eye-tracking analytics for the exploration of gaze patterns and behaviours. Visual Informatics, 6(2):1–13, 2022. doi: 10 . 1016/J . VISINF . 2022 . 02 . 004
- Towards pervasive augmented reality: Context-awareness in augmented reality. IEEE Transactions on Visualization and Computer Graphics, 23(6):1706–1724, 2017. doi: 10 . 1109/TVCG . 2016 . 2543720
- C. Gutwin and S. Greenberg. Design for individuals, design for groups: Tradeoffs between power and workspace awareness. In Proceedings of the ACM Conference on Computer-Supported Cooperative Work and Social Computing, pp. 207–216. ACM, New York, NY, USA, 1998. doi: 10 . 1145/289444 . 289495
- High-speed visual estimation using preattentive processing. ACM Transactions on Computer-Human Interaction, 6(2):107–135, 1999. doi: 10 . 1145/230562 . 230563
- Edit wear and read wear. In Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 3–9. ACM, New York, NY, USA, 1992. doi: 10 . 1145/142750 . 142751
- J. E. Hoffmann. A two-stage model of visual search. Perception & Psychophysics, 25:319–327, 1979. doi: 10 . 3758/BF03198811
- R. J. K. Jacob. What you look at is what you get: eye movement-based interaction techniques. In Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 11–18. ACM, New York, NY, USA, 1990. doi: 10 . 1145/97243 . 97246
- H. Jänicke and M. Chen. A salience-based quality metric for visualization. Computer Graphics Forum, 29(3):1183–1192, 2010. doi: 10 . 1111/J . 1467-8659 . 2009 . 01667 . X
- Does an eye tracker tell the truth about visualizations?: Findings while investigating visualizations for decision making. IEEE Transactions on Visualization and Computer Graphics, 18(12):2421–2430, 2012. doi: 10 . 1109/TVCG . 2012 . 215
- Eye tracking evaluation of visual analytics. Information Visualization, 15(4):340–358, 2016. doi: 10 . 1177/1473871615609787
- J. D. Mackinlay. Automating the design of graphical presentations of relational information. ACM Transactions on Graphics, 5(2):110–141, 1986. doi: 10 . 1145/22949 . 22950
- Data visualization saliency model: A tool for evaluating abstract data visualizations. IEEE Transactions on Visualization and Computer Graphics, 24(1):563–573, 2018. doi: 10 . 1109/TVCG . 2017 . 2743939
- T. Munzner. Visualization Analysis and Design. A K Peters, Boca Raton, FL, USA, 2014.
- U. Neisser. Cognitive Psychology. Appleton-Century-Crofts, New York, NY, USA, 1967.
- Change blindness in information visualization: A case study. In Proceedings of the IEEE Symposium on Information Visualization, pp. 15–22. IEEE Computer Society, Los Alamitos, CA, USA, 2001. doi: 10 . 1109/INFVIS . 2001 . 963274
- Context aware computing for the internet of things: A survey. IEEE Communications Surveys & Tutorials, 16(1):414–454, 2014. doi: 10 . 1109/SURV . 2013 . 042313 . 00197
- Gaze-touch: combining gaze with multi-touch for interaction on the same surface. In Proceedings of the ACM Symposium on User Interface Software and Technology, pp. 509–518. ACM, New York, NY, USA, 2014. doi: 10 . 1145/2642918 . 2647397
- K. Pfeuffer and H. Gellersen. Gaze and touch interaction on tablets. In Proceedings of the ACM Symposium on User Interface Software and Technology, pp. 301–311. ACM, New York, NY, USA, 2016. doi: 10 . 1145/2984511 . 2984514
- Gaze + pinch interaction in virtual reality. In Proceedings of the ACM Symposium on Spatial User Interaction, pp. 99–108. ACM, New York, NY, USA, 2017. doi: 10 . 1145/3131277 . 3132180
- Exploring visual attention and saliency modeling for task-based visual analysis. Computers & Graphics, 72:26–38, 2018. doi: 10 . 1016/j . cag . 2018 . 01 . 010
- Intelligent gaze-added interfaces. In Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 273–280. ACM, New York, NY, USA, 2000. doi: 10 . 1145/332040 . 332444
- Context-aware computing applications. In 1994 First Workshop on Mobile Computing Systems and Applications, pp. 85–90, 1994. doi: 10 . 1109/WMCSA . 1994 . 16
- The Reality of the Situation: A Survey of Situated Analytics. IEEE Transactions on Visualization and Computer Graphics, 2023. To appear. doi: 10 . 1109/TVCG . 2023 . 3285546
- A scanner deeply: Predicting gaze heatmaps on visualizations using crowdsourced eye movement data. IEEE Transactions on Visualization and Computer Graphics, 29(1):396–406, 2023. doi: 10 . 1109/TVCG . 2022 . 3209472
- S. Stellmach and R. Dachselt. Look & touch: gaze-supported target acquisition. In Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 2981–2990. ACM, New York, NY, USA, 2012. doi: 10 . 1145/2207676 . 2208709
- Designing gaze-supported multimodal interactions for the exploration of large image collections. In Proceedings of the Conference on Novel Gaze-Controlled Applications, pp. 1:1–1:8. ACM, New York, NY, USA, 2011. doi: 10 . 1145/1983302 . 1983303
- A. M. Treisman and G. Gelade. A feature-integration theory of attention. Cognitive Psychology, 12(1):97–136, 1980. doi: 10 . 1016/0010-0285(80)90005-5
- eSeeTrack - visualizing sequential fixation patterns. IEEE Transactions on Visualization and Computer Graphics, 16(6):953–962, 2010. doi: 10 . 1109/TVCG . 2010 . 149
- Eye pull, eye push: Moving objects between large screens and personal devices with gaze and touch. In Proceedings of the IFIP Conference on Human-Computer Interaction, vol. 8118 of Lecture Notes in Computer Science, pp. 170–186. Springer, New York, NY, USA, 2013. doi: 10 . 1007/978-3-642-40480-1_11
- An empirical investigation of gaze selection in mid-air gestural 3D manipulation. In Proceedings of the IFIP Conference on Human-Computer Interaction, vol. 9297 of Lecture Notes in Computer Science, pp. 315–330. Springer, New York, NY, USA, 2015. doi: 10 . 1007/978-3-319-22668-2_25
- C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann, San Francisco, CA, USA, 3 ed., 2012.
- C. Ware and H. H. Mikaelian. An evaluation of an eye tracker as a device for computer input. In Proceedings of the SIGCHI/GI Conference on Human Factors in Computing Systems and Graphics Interface, pp. 183–188. ACM, New York, NY, USA, 1987. doi: 10 . 1145/29933 . 275627
- M. Weiser. The computer for the 21st Century. Scientific American, 265(3):94–104, 1991. doi: 10 . 1145/329124 . 329126
- J. H. R. White and G. Buscher. User see, user point: Gaze and cursor alignment in web search. In Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 1341–1350. ACM, New York, NY, USA, 2012. doi: 10 . 1145/2207676 . 2208591
- J. M. Wolfe. Guided search 2.0 a revised model of visual search. Psychonomic Bulletin & Review, 1(2):202–238, 1994. doi: 10 . 3758/BF03200774
- Manual and gaze input cascaded (MAGIC) pointing. In Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 246–253. ACM, New York, NY, USA, 1999. doi: 10 . 1145/302979 . 303053
- Arvind Srinivasan (8 papers)
- Johannes Ellemose (1 paper)
- Peter W. S. Butcher (3 papers)
- Panagiotis D. Ritsos (5 papers)
- Niklas Elmqvist (37 papers)