Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Swarm-Based Trajectory Generation and Optimization for Stress-Aligned 3D Printing (2404.10686v1)

Published 16 Apr 2024 in math.OC and cs.CE

Abstract: In this study, we present a novel swarm-based approach for generating optimized stress-aligned trajectories for 3D printing applications. The method utilizes swarming dynamics to simulate the motion of virtual agents along the stress produced in a loaded part. Agent trajectories are then used as print trajectories. With this approach, the complex global trajectory generation problem is subdivided into a set of sequential and computationally efficient quadratic programs. Through comprehensive evaluations in both simulation and experiments, we compare our method with state-of-the-art approaches. Our results highlight a remarkable improvement in computational efficiency, achieving a 115x faster computation speed than existing methods. This efficiency, combined with the possibility to tune the trajectories spacing to match the deposition process constraints, makes the potential integration of our approach into existing 3D printing processes seamless. Additionally, the open-hole tensile specimen produced on a conventional fused filament fabrication set-up with our algorithm achieve a notable ~10% improvement in specific modulus compared to existing trajectory optimization methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. “The state of 3d printing report: 2022 by sculpteo,” https://www.sculpteo.com/en/ebooks/state-of-3d-printing-report-2022/, 2022, (Accessed on 01/04/2024).
  2. ISO/ASTM International, “Additive manufacturing — general principles — fundamentals and vocabulary,” International Organization for Standardization, Standard ISO/ASTM 52900:2021, Nov. 2021.
  3. G. A. Nisja, A. Cao, and C. Gao, “Short review of nonplanar fused deposition modeling printing,” Material Design & Processing Communications, vol. 3, no. 4, p. e221, 2021.
  4. D. Ahlers, F. Wasserfall, N. Hendrich, and J. Zhang, “3d printing of nonplanar layers for smooth surface generation,” in 2019 IEEE 15th international conference on automation science and engineering (CASE).   IEEE, 2019, pp. 1737–1743.
  5. M. J. Hooshmand, S. Mansour, and A. Dehghanian, “Optimization of build orientation in FFF using response surface methodology and posterior-based method,” Rapid Prototyping Journal, vol. 27, no. 5, pp. 967–994, 2021.
  6. L. Di Angelo, P. Di Stefano, A. Dolatnezhadsomarin, E. Guardiani, and E. Khorram, “A reliable build orientation optimization method in additive manufacturing: The application to FDM technology,” The International Journal of Advanced Manufacturing Technology, vol. 108, no. 1, pp. 263–276, 2020.
  7. P. Delfs, M. Tows, and H.-J. Schmid, “Optimized build orientation of additive manufactured parts for improved surface quality and build time,” Additive Manufacturing, vol. 12, pp. 314–320, 2016.
  8. C. Wang and X. Qian, “Simultaneous optimization of build orientation and topology for additive manufacturing,” Additive Manufacturing, vol. 34, p. 101246, 2020.
  9. B. Brenken, E. Barocio, A. Favaloro, V. Kunc, and R. B. Pipes, “Fused filament fabrication of fiber-reinforced polymers: A review,” Additive Manufacturing, vol. 21, pp. 1–16, 2018.
  10. D. Jiang and D. E. Smith, “Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication,” Additive Manufacturing, vol. 18, pp. 84–94, 2017.
  11. L. Xia, S. Lin, and G. Ma, “Stress-based tool-path planning methodology for fused filament fabrication,” Additive Manufacturing, vol. 32, p. 101020, 2020.
  12. G. Fang, T. Zhang, S. Zhong, X. Chen, Z. Zhong, and C. C. Wang, “Reinforced FDM: Multi-axis filament alignment with controlled anisotropic strength,” ACM Transactions on Graphics (TOG), vol. 39, no. 6, pp. 1–15, 2020.
  13. X. Guidetti, A. Rupenyan, L. Fassl, M. Nabavi, and J. Lygeros, “Advanced manufacturing configuration by sample-efficient batch bayesian optimization,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 886–11 893, 2022.
  14. K. Barton, S. Kapila, and L. Y. L. Tse, “Fiber-reinforced 3d printing,” Sep. 10 2019, uS Patent 10,406,750.
  15. X. Chen, G. Fang, W.-H. Liao, and C. C. Wang, “Field-based toolpath generation for 3d printing continuous fibre reinforced thermoplastic composites,” Additive Manufacturing, vol. 49, p. 102470, 2022.
  16. Y. Yao, Y. Zhang, M. Aburaia, and M. Lackner, “3d printing of objects with continuous spatial paths by a multi-axis robotic FFF platform,” Applied Sciences, vol. 11, no. 11, p. 4825, 2021.
  17. S. Gantenbein, K. Masania, W. Woigk, J. P. Sesseg, T. A. Tervoort, and A. R. Studart, “Three-dimensional printing of hierarchical liquid-crystal-polymer structures,” Nature, vol. 561, no. 7722, pp. 226–230, 2018.
  18. X. Guidetti, E. C. Balta, Y. Nagel, H. Yin, A. Rupenyan, and J. Lygeros, “Stress flow guided non-planar print trajectory optimization for additive manufacturing of anisotropic polymers,” Additive Manufacturing, vol. 72, p. 103628, 2023.
  19. X. Guidetti, M. Kühne, Y. Nagel, E. C. Balta, A. Rupenyan, and J. Lygeros, “Data-driven process optimization of fused filament fabrication based on in situ measurements,” arXiv preprint arXiv:2210.15239, 2022.
  20. G. Siqueira, D. Kokkinis, R. Libanori, M. K. Hausmann, A. S. Gladman, A. Neels, P. Tingaut, T. Zimmermann, J. A. Lewis, and A. R. Studart, “Cellulose nanocrystal inks for 3d printing of textured cellular architectures,” Advanced Functional Materials, vol. 27, no. 12, p. 1604619, Feb. 2017.
  21. X. Guidetti, A. Mukne, M. Rueppel, Y. Nagel, E. C. Balta, and J. Lygeros, “Data-driven extrusion force control tuning for 3d printing,” arXiv preprint arXiv:2403.16470, 2024.
  22. X. Guidetti, N. Mingard, R. Cruz-Oliver, Y. Nagel, M. Rueppel, A. Rupenyan, E. C. Balta, and J. Lygeros, “Force controlled printing for material extrusion additive manufacturing,” arXiv preprint arXiv:2403.16042, 2024.
  23. M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: a review from the swarm engineering perspective,” Swarm Intelligence, vol. 7, pp. 1–41, 2013.
  24. L. Bayındır, “A review of swarm robotics tasks,” Neurocomputing, vol. 172, pp. 292–321, 2016.
  25. S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A survey on aerial swarm robotics,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 837–855, 2018.
  26. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” The international journal of robotics research, vol. 5, no. 1, pp. 90–98, 1986.
  27. E. Rimon and D. E. Kodischek, “Exact robot navigation using artificial potential functions,” IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp. 501–518, 1992.
  28. J. H. Reif and H. Wang, “Social potential fields: A distributed behavioral control for autonomous robots,” Robotics and Autonomous Systems, vol. 27, no. 3, pp. 171–194, 1999.
  29. K. Warburton and J. Lazarus, “Tendency-distance models of social cohesion in animal groups,” Journal of theoretical biology, vol. 150, no. 4, pp. 473–488, 1991.
  30. D. Grünbaum and A. Okubo, “Modelling social animal aggregations,” in Frontiers in mathematical biology.   Springer, 1994, pp. 296–325.
  31. V. Gazi and K. M. Passino, “A class of attractions/repulsion functions for stable swarm aggregations,” International Journal of Control, vol. 77, no. 18, pp. 1567–1579, 2004.
  32. ——, “Stability analysis of swarms,” IEEE transactions on automatic control, vol. 48, no. 4, pp. 692–697, 2003.
  33. ——, “Stability analysis of social foraging swarms,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34, no. 1, pp. 539–557, 2004.
  34. V. Gazi, “On lagrangian dynamics based modeling of swarm behavior,” Physica D: Nonlinear Phenomena, vol. 260, pp. 159–175, 2013.
  35. T. R. Metcalf, “Resolving the 180-degree ambiguity in vector magnetic field measurements: The ‘minimum’energy solution,” Solar Physics, vol. 155, pp. 235–242, 1994.
  36. M. Danilova, P. Dvurechensky, A. Gasnikov, E. Gorbunov, S. Guminov, D. Kamzolov, and I. Shibaev, “Recent theoretical advances in non-convex optimization,” in High-Dimensional Optimization and Probability: With a View Towards Data Science.   Springer, 2022, pp. 79–163.
  37. M. Frank, P. Wolfe et al., “An algorithm for quadratic programming,” Naval research logistics quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.
  38. “Standard test method for open-hole tensile strength of polymer matrix composite laminates,” American Society for Testing and Materials, Tech. Rep. D5766/D5766M – 23, 2023.
  39. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.
  40. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2649-2
  41. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, 2018.
  42. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an operator splitting solver for quadratic programs,” Mathematical Programming Computation, vol. 12, no. 4, pp. 637–672, 2020. [Online]. Available: https://doi.org/10.1007/s12532-020-00179-2
  43. “Prusaslicer 2.7.2,” https://www.prusa3d.com/en/page/prusaslicer_424/, 2024, (Released on 29/02/2024).

Summary

We haven't generated a summary for this paper yet.